

City of Stayton Transportation System Plan

Stayton, Oregon

Prepared For:
City of Stayton
311 N. Third Avenue
Stayton, Oregon 97383
(503) 769-2998

Prepared By:
Kittelson \& Associates, Inc.
851 SW 6 ${ }^{\text {th }}$ Avenue, Suite 600
Portland, OR 97204
(503) 228-5230

Project Manager: Susan Wright
Project Analyst: Bryan Graveline
Project Principal: Marc Butorac

Adopted June 2019

KITTELSON
\& ASSOCIATES

2019 TRANSPORTATION SYSTEM PLAN

TECHNICAL APPENDICES

Appendix A: Tech Memo \# 1: Plans and Policies
Appendix B: Tech Memo \#2: Goals, Objectives, \& Evaluation Criteria
Appendix C: Tech Memo \#3: Existing and Future Conditions
Appendix D: Tech Memo \#4: System Alternatives
Appendix E: 2015 Final Design Standards Proposed Changes

APPENDIX A: TECH MEMO \#1: PLANS AND POLICIES

TECHNICAL MEMORANDUM \#1

TABLE OF CONTENTS
Purpose and Content of Memorandum 2
Oregon Transportation Plan (1992, Updated 1999, 2006) 3
1999 Oregon Highway Plan (Updated 2011) 4
The Oregon Bicycle and Pedestrian Plan 5
Oregon Freight Plan (2011) 6
Marion County Rural Transportation System Plan 6
Wilco Road Corridor Conceptual Plans 8
Downtown Stayton Transportation and Revitalization Plan 9
Stayton Parks and Recreation Master Plan 11
Roadway Design Standards 11
Stayton Comprehensive Plan (2013) 12
Stayton Land Use and Development Code 12
Stayton Enterprise Zone 13
Sublimity Interchange Area Management Plan (IAMP) 14
Stayton Safe Routes to School (SRTS) 14
Stormwater Management Manual (SWMM) 15
Transportation Planning Rule 16

PURPOSE AND CONTENT OF MEMORANDUM

This memorandum summarizes the plans, policies, targets and standards that are applicable to the City of Stayton Transportation System Plan (TSP) update. The City's current TSP will serve as the foundation for the update process, upon which new information obtained from system analysis and stakeholder input will be applied to address changing transportation needs through the year 2040. As new strategies for addressing transportation needs are proposed, compliance and coordination with the plans, policies, and regulations described in this document will be necessary. The City will be adopting the TSP as an element of the Comprehensive Plan through a legislative amendment procedure. Written findings demonstrating that the updated TSP complies with applicable criteria summarized here will be necessary to support TSP adoption.

The following plans and policies were reviewed:
State Plans and Regulations

- Oregon Transportation Plan (updated 1999, 2006)
- Oregon Highway Plan (updated 2006)
- Oregon Bicycle and Pedestrian Plan (2017)
- ODOT Highway Design Manual
- Oregon Access Management Rules (OAR 734-051)
- Transportation Planning Rule (OAR 660-012)

Regional Plans and Regulations

- Sublimity Interchange Area Management Plan (IAMP)
- Marion County Rural Transportation Plan (RTSP)

Local Plans and Regulations

- Stayton Safe Routes to School (SRTS)
- Stormwater Management Manual
- Stayton Enterprise Zone
- Stayton Land Use and Development Ordinance
- Stayton Comprehensive Plan (2013)
- Stayton Roadway Design Standards
- Stayton Parks and Recreation Master Plan
- Wilco Road Corridor Conceptual Plans

KEY FINDINGS

- The updated Oregon Highway Plan mobility policy (Policy 1F) embodies more flexibility for meeting mobility "targets" for state highways.
- Significant updates to the Oregon Bicycle and Pedestrian Plan have been adopted.
- The Transportation Planning Rule has been updated since the last Stayton TSP update. Table 1 in this memorandum provides suggestions regarding how city requirements can better meet the State requirements.
- Several local planning efforts, including work on Safe Routes to School and the Downtown Stayton Transportation and Revitalization Plan, have identified transportation needs that will be evaluated and/or updated by the TSP update
- The timing of needed improvements is a key issue for this TSP update, given development constraints within Stayton and an Urban Growth Boundary that is expected to accommodate more than 20 years of projected growth.

OREGON TRANSPORTATION PLAN (1992, UPDATED 1999, 2006)

The Oregon Transportation Plan (OTP) is the state's long-range multimodal transportation plan that addresses the future transportation needs of the State of Oregon through the year 2030. The primary function of the OTP is to establish goals, policies, strategies and initiatives that are translated into a series of modal plans, such as the Oregon Highway Plan and Oregon Bike and Pedestrian Plan. The OTP considers all modes of Oregon's transportation system, including Oregon's airports, bicycle and pedestrian facilities, highways and roadways, pipelines, ports and waterway facilities, public transportation, and railroads. It assesses state, regional, and local public and private transportation facilities. In addition, the OTP provides the framework for prioritizing transportation improvements based on varied future revenue conditions, but it does not identify specific projects for development.

The OTP provides broad policy guidance and sets seven overarching goals for the state. Through these goals and associated policies and strategies, the OTP emphasizes:

- Maintaining and maximizing the assets in place
- Optimizing the performance of the existing system through technology
- Integrating transportation, land use, economic development and the environment
- Integrating the transportation system across jurisdictions, ownerships and modes
- Creating sustainable funding
- Investing in strategic capacity enhancements

APPLICABILITY TO THE TSP UPDATE:

Consistent with OTP policy, the TSP update will seek to enhance integration of the transportation system across modes and maximize the performance of the existing transportation system before considering larger and costlier additions to the system. The goals and objectives of the Stayton TSP Update will be broadly consistent with the strategies and policies of the OTP.

1999 OREGON HIGHWAY PLAN (UPDATED 2011)

The Oregon Highway Plan (OHP) defines policies and investment strategies for Oregon's state highway system over the next 20 years by further refining the goals and policies of the OTP. The plan contains three elements: a vision element that describes the broad goal for how the highway system should look in 20 years; a policy element that contains goals, policies, and actions to be followed by state, regional, and local jurisdictions; and a system element that includes an analysis of needs, revenues, and performance measures. One of the key goals of the OHP is to maintain and improve safe and efficient movement of people and goods, while supporting statewide, regional, and local economic growth and community livability.

OHP Goal 1, Policy 1A (State Highway Classification System) categorizes state highways for planning and management decisions. OR 22, which is located north of the City, is classified as a Statewide Highway. Statewide highways "typically provide inter-urban and inter-regional mobility and provide connections to larger urban areas, ports, and major recreation areas that are not directly served by Interstate Highways. A secondary function is to provide connections for intra-urban and intra-regional trips. The management objective is to provide safe and efficient, high-speed, continuous-flow operation. In constrained and urban areas, interruptions to flow should be minimal." Highway 22 is a Freight Route, a Reduction Review Route, and an Expressway, (see OHP Appendix D).

Significant amendments to Policy 1F (which establishes mobility standards) of the OHP were adopted at the end of 2011. Those amendments were made to address concerns that state transportation policy and requirements have led to unintended consequences and inhibited economic development. Policy IF now provides a clearer policy framework for considering measures other than volume-to-capacity (v/c) ratios for evaluating mobility performance. Also as part of these amendments, v/c ratios established in Policy 1F were changed from being standards to "targets." These targets are to be used to determine significant effect pursuant to Transportation Planning Rule, Section -0060.

APPLICABILITY TO THE TSP UPDATE:

The TSP update will need to reflect the State's management objective for OR 22 to provide safe and efficient, high-speed, continuous-flow operation. In addition, the local TSP will need to be recognize that freight movements are a priority when developing and implementing plans and projects on freight routes and that any proposed modifications that would result in a reduction of vehicle-carrying capacity requires additional involvement by the freight industry. ${ }^{1}$

[^0]
IHE OREGON BICYCLE AND PEDESTRIAN PLAN

The goals and policies of the Oregon Transportation Plan (OTP) are further implemented by various modal plans, including Oregon Bicycle and Pedestrian Plan. The Oregon Bicycle and Pedestrian Plan was recently updated and is comprised of two parts including a policy document and a separate design guide.

The policy document contains background information, legal mandates and current conditions, goals, actions and implementation strategies ODOT proposes to improve bicycle and pedestrian transportation.

The guiding vision for the plan states that by 2040:
"In Oregon, people of all ages, incomes, and abilities can access destinations in urban and rural areas on comfortable, safe, well connected biking and walking routes. People can enjoy Oregon's scenic beauty by walking and biking on a transportation system that respects the needs of its users and their sense of safety. Bicycle and pedestrian networks are recognized as integral, interconnected elements of the Oregon transportation system that contribute to our diverse and vibrant communities and the health and quality of life enjoyed by Oregonians."

Key plan concepts include:

- education and outreach (e.g., rules of the road and personal responsibility, safe behaviors)
- inter-modal connections (e.g., how pedestrians and cyclists reach transit stops); and
- the relationship between bicycle and pedestrian facilities and community and economic vitality, including bicycle and pedestrian tourism and economic development

The Design Guide is the technical element of the plan that guides the design and management of bicycle and pedestrian facilities on state-owned facilities. It is an appendix to the Highway Design Manual and provides best practices and design guidelines for bicycle and pedestrian facilities.

APPLICABILITY TO THE TSP UPDATE:

The TSP update process will consider OBPP policies and strategies for their applicability to Stayton and, where appropriate, the updated TSP will reflect the OBPP in local policies and project selection. The State standards and strategies for pedestrian and bicycle improvements can serve as "best practices" and inform recommended bicycle and pedestrian improvements in the updated TSP. The TSP planning process will identify and address areas where enhancements are needed to improve sidewalk accessibility, including curb ramps, to better comply with the Americans with Disabilities Act (ADA).

The TSP planning process will consider OBPP standards and designs where pedestrian and bicycle projects are recommended on, or parallel to, state facilities.

OREGON FREIGHT PLAN (2011)

The Oregon Freight Plan (OFP) is an additional modal plan as part of the broader OTP. The intent of the OFP is to improve freight connections to local, state, tribal, regional, national, and international markets with the goal of increasing trade-related jobs and income for Oregon workers and businesses. The plan documents the economic importance of freight movement in Oregon, identifies transportation networks important to freight-dependent industries and recommends multimodal strategies to increase strategic freight system efficiency. The plan identifies sixteen freight issues and strategies with action steps to address the issues.

OR 22 is part of the Western Corridor in the Mid-Willamette Valley ACT. Together, this Western Corridor connects Oregon with the national freight transportation system via several truck, rail, seaport and airport facilities, including I-84, U.S. 30, U.S. 20 and U.S. 199; Class I and shortline railroads; marine facilities at Astoria, Coos Bay and the Port of Portland; and air facilities at Portland International Airport. These connections are critical for the movement of the majority of goods produced throughout Oregon and on the l-5 corridor.

APPLICABILITY TO THE TSP UPDATE:

The freight system impacts will be considered during the development of transportation solutions for the TSP update. The TSP will help Stayton maintain and enhance the efficiency of truck and rail movement in the study area.

MARION COUNTY RURAL TRANSPORTATION SYSTEM PLAN

Adopted in 2005, the Marion County Rural TSP contains goals and objectives, an inventory of facilities, projections of future traffic volumes, and a strategy for meeting the County's transportation goals.

The overall mission statement of the TSP is as follows:
"Develop a balanced, safe, multi-modal transportation system to accommodate planned growth, facilitate economic development, recognize fiscal reality, utilize available resources as efficiently as possible and maintain a high standard of livability and safety to serve the transportation needs of our community"

The County began, but did not complete, a TSP update in 2013. The update included a companion "Urban Strategy" to help address county policies and priorities within UGB's. Documentation included identifying roadways, bridges, rail crossings, and flashing beacons in urban areas (including Stayton). No updates to the Roadway System Needs
and Recommended Improvements (Chapter 8) or the Recommended Non-Roadway Improvements (Chapter 9) have been made since2005.

There are 9.5 miles of roadways within the Stayton UGB (5.5 within the City Limits) that are under County jurisdiction. These include portions of: Golf Club Rd, Wilco Rd, Shaff Rd, E Santiam Rd, Ridge Way, and Cascade Hwy/First Avenue. These

County bridges within Stayton include: Golf Club Rd at Mill Creek, Shaff Rd SE at Salem Ditch, Wilco Rd SE at Salem Ditch, N First Ave at Salem Ditch ,S First Ave at Mill Race, and Cascade Hwy SE at Mill Creek.

APPLICABILITY TO THE TSP UPDATE:

Goal 6 of the Marion County TSP addresses coordination and cooperation among all transportation users and providers, including between the County and cities. Specific policies are included in Chapter 10.3.1. and the two parts of Policy 4 are particularly applicable to the TSP update.

Policy 4:

a) The County will work with each community to consider the goals and visions of that community in developing and maintaining the transportation system. This will include coordination of the County's transportation plans with their transportation plans. Deviation from a community's desire may occur when addressing issues involving safety, significant added expense, modernization projects, liability, and providing services that are in the best interests of the public.
b) Within the Urban Growth Boundary of an incorporated city, Marion County Public Works will apply roadway design standards and criteria in the Transportation System Plan (TSP) adopted by that city except in cases where, in the engineering judgment of the Marion County Public Works Department, it would not be appropriate to do so. In the absence of adopted standards or a TSP by a city, Marion County Public Works will use its own engineering standards and/or judgment to determine the appropriate planning direction or standard to apply.

The Stayton TSP update will be coordinated with the Marion County Rural TSP, particularly with regard to county-owned and county-operated roadways and other facilities within Stayton. The Stayton TSP will also be consistent with the overall mission statement, goals, and objectives of the County's TSP, which emphasize multi-modal users and sound investments that maximize the usable life of facilities.

WILCO ROAD CORRIDOR CONCEPTUAL PLANS

In 2014 the City of Stayton initiated a conceptual design effort to improve the Wilco Road Corridor. The planning process was undertaken to provide general guidance on street design criteria, including the anticipated right of way requirements, typical street design sections, stormwater management strategies, and other pertinent information for potential development located within and around the Wilco Road area. Shown on Figure 1 areas where anticipated right-of-way requirements, street design, stormwater management strategies, and other pertinent information for potential development in the area has been evaluated by the City.

APPLICABILITY TO THE TSP UPDATE:

As noted in the conceptual plan, this TSP update will evaluate if this proposed Wilco Road area conceptual design fits into the overall TSP, or if modifications to the conceptual design are needed.

Figure 1. Wilco Road Corridor Site Plan

DOWNTOWN STAYTON TRANSPORTATION AND REVITALIZATION PLAN

The Downtown Stayton Transportation and Revitalization plan was originally adopted in 2007 and revised in 2010. The plan covers the area shown in Figure 2, and includes a Vision, Goals, Policies and Action Items developed with the assistance of the Downtown Advisory Committee appointed by the City Council. It describes a number of design, transportation and land use elements that will achieve its several vision statements. Those elements include:

- Concentrating commercial development in a compact area along 3rd Avenue.
- Distinguishing between the downtown commercial zones and commercial zones in other parts of the city. Two new mixed-use zones, a Central Core Mixed Use and Downtown Residential Mixed Use are proposed.
- Allowing mixed use residential development in the downtown.
- Developing a new Civic Center downtown.
- Redeveloping the Woolen Mill property for housing.
- Constructing streetscape improvements on important mixed use commercial streets.
- Establishing gateways into downtown.
- Establishing a special character on 1st Avenue.
- Establishing links and access to parks, public facilities and waterways.

Figure 2. Downtown Stayton Transportation and Revitalization Plan Location Map

APPLICABILITY TO THE TSP UPDATE:

The goals, policies, and implementation actions within the Downtown Stayton Transportation and Revitalization Plan will advise the TSP update process. Transportation system forecasts used for the TSP update will take into account the zoning and development assumptions within this plan, namely the increase in residential/mixed uses within the downtown core. The plan includes a list of capital improvement projects, with phasing and priority ratings, that the TSP update will evaluate. Multi-modal goals of the plan will be reaffirmed, updated where necessary, and incorporated into the bicycle and pedestrian network sections of the TSP update.

Importantly, the TSP will identify needed projects, including their funding and prioritization, enabling the city to focus resources on projects downtown consistent with the Downtown Plan. ${ }^{2}$

STAYTON PARKS AND RECREATION MASTER PLAN

The 2005 Parks and Recreation Master Plan identifies park and recreational facility needs by comparing an inventory of park facilities and open space with recreational demand in the City of Stayton. Recommended park guidelines are included along with an overall concept for where future park sites should be located, including specialized facilities such as a skateboard park, a group picnic area, a senior center, sports fields, and recreational programs and services. Finally, the plan contains a financing strategy for meeting park need within the City.

The Parks and Recreation Master Plan also provides recommendations for trails and pathways in Stayton, including design guidance and a "Dream Trails Map," of general facility locations.

APPLICABILITY TO THE STAYTON TSP UPDATE

The TSP will evaluate how residents reach existing and planned recreation areas and any safety issues in their vicinity. The pedestrian and bicycle elements of the TSP Update will look to the Parks and Recreation Master Plan for guidance regarding trails. Where new design standards or trail facilities are identified through the TSP Update process, revisions to the Parks Master Plan may be considered, or explicit text that the contents of TSP supersede the recommendations of the Parks and Recreation Master Plan.

ROADWAY DESIGN STANDARDS

The 2015 Public Works Design Standards contains requirements for construction of transportation facilities. Right of way width, paved improvement width, number of lanes and lane sizes, presence of bicycle lanes/sidewalks, and other details are specified for various functional classifications of roads.

APPLICABILITY TO THE STAYTON TSP UPDATE:

The TSP update will evaluate the standards for roadway design contained within the Public Works Design Standards and may recommend changes. The TSP update is also expected to include creation of cross-section diagrams to help planners, property owners, and the public understand roadway designs. The planning process will result in

[^1]recommendations to ensure that standards in the TSP, the Public Works Design Standards, and the Land Use and Development Code are consistent.

STAYION COMPREHENSIVE PLAN (2013)

The Stayton Comprehensive Plan was adopted in 2013 and establishes a guide for the growth and development of the City. It contains plans and policies that are an adopted statement of public policy which guide the City's decision-making process. The Comprehensive Plan enacts the State's Land Use Planning Goals, touching on a wide range of topics from natural areas and open space, to housing and the local economy, to public facilities and transportation. Chapter 4 of the current Stayton Comprehensive Plan includes 10 transportation goals, associated policies for each and, for each policy, one or more action items.

APPLICABILITY TO THE TSP UPDATE:

The Transportation System Plan is an adopted part of the Comprehensive Plan; updates to the TSP will need to be reflected in the Comprehensive Plan. It is expected that recommendations that result from this planning process will necessitate an update to Comprehensive Plan Chapter 4, including background information, goals, policies and action items.

STAYTON LAND USE AND DEVELOPMENT CODE

The Land Use and Development Code for the City of Stayton is Title 17 of the Municipal Code. Title 17 is intended to implement the City's Comprehensive Plan and govern growth in its urban growth boundary, and to establish procedures for development applications, review, hearings, and the establishment of fees and penalties for noncompliance. The code establishes zoning districts, their permitted uses, and other specific regulations for development and activity therein (17.16); regulations for land divisions (17.24); and required transportation improvements (17.26).

APPLICABILITY TO THE TSP UPDATE:

The TSP will be, in part, implemented incrementally through development under the Stayton Land Use and Development Code. It is therefore important that the code's provisions be consistent with (a) broad goals and policies of the TSP update, and (b) its specific recommendations with regard to roadway functional classifications, design, access management, and multi-modal connectivity.

The Transportation Planning Rule section of this memorandum is a first step in the process of evaluating how the Stayton Land Use and Development Code addresses common transportation planning priorities and aligns with state law and the goals and objectives of the TSP update. The planning process will result in recommendations to
ensure that standards in the TSP, the Public Works Design Standards, and the Land Use and Development Code are consistent.

STAYTON ENTERPRISE ZONE

The Enterprise Zone provides a short-term (3- to 5-year) exemption from property taxes on improvements to qualified businesses that increase employment in the zone. Since inception of the Enterprise Zone in 2010, there have been three business expansions approved for tax exemptions: Littau Harvester, for an estimated value of \$575,000 in improvements with 9 new jobs; Willamette Valley Lumber, for an estimated value of improvements of $\$ 1,560,000$ with 35 new jobs; and Redbuilt, for an estimated value of $\$ 2,800,000$ in improvements with 14 new jobs. The location of the enterprise zone is shown in Figure 3.

Figure 3. Enterprise Zone Location

APPLICABILITY TO THE TSP UPDATE:

Stayton's enterprise zone may impact the amount and location of employment growth assumed as part of forecasting and modeling efforts of the TSP. The purpose of this zone
is to encourage businesses to locate and expand within this area; a successful policy long-term could reasonably expect to see continued employment growth in the area. The enterprise zone may also have implications for infrastructure funding, as the property tax exemption would result in lower revenues from these users.

SUBLIMITY INTERCHANGE AREA MANAGEMENT PLAN (IAMP)

This 2006 IAMP addresses the operational needs of Sublimity Interchange, located at the junction of Highway 22 and Cascade Highway. The IAMP documents the land use and transportation strategies developed to protect the function of the Sublimity Interchange over the long-term (20-plus years). Its main access management recommendations include:

- Several site-specific requirements of properties north and northwest of the interchange, which appear to have taken place
- Recommendations for deviations/realignments of Whitney Street and Golf Lane south of the highway
- Signalization of interchange on-ramps
- Right-turn pockets on eastbound Oregon 22 exit ramp approach to Cascade Highway, and on Shaff Road-Fern Ridge Road as they approach Cascade Highway (when traffic demand requires)
- Coordination of traffic-signal operations along Cascade Highway due to the close spacing of signalized intersections

APPLICABILITY TO THE TSP UPDATE:

The TSP update will be consistent with the IAMP and its recommendations, particularly the future design and alignments of Stayton's roadways near the interchange. The TSP update may also help anticipate when some of the traffic-induced requirements of the IAMP are likely to occur.

STAYTON SAFE ROUTES TO SCHOOL (SRTS

Preliminary planning related to Safe Routes to School was conducted in 2012-2013, and included surveys of parents, identifying barriers to walking and biking to school, and improvement plans for Shaff Road and Gardner Road. Recommendations include:

- On Shaff Road, the north side of the road is identified for a new concrete sidewalk between $1^{\text {st }}$ Avenue and Kindle Way
- Gardner Road was identified for a new sidewalk on the East side of the road between Shaff and Locust (see Figure 4).

Figure 4. Safe Routes to School Improvement Locations

APPLICABILITY TO THE TSP UPDATE:

Recommended improvements to Shaff Road and Gardner Road will be evaluated as part of the TSP update and considered along with other projects to improve bicycle/pedestrian safety near school locations.

STORMWATER MANAGEMENT MANUAL (SWMM)

In 2010 the City of Stayton adopted stormwater design standards based on the City of Portland's Stormwater Management Plan. This was done to provide methodologies to reduce stormwater runoff and to improve the water quality of the stormwater runoff before it enters the downstream ditches, creeks, streams and rivers. All new development in the City is required to meet these stormwater management requirements prior to any permits being issued.

APPLICABILITY TO THE STAYTON TSP UPDATE:

Design for roadway facilities will be evaluated in the TSP Update. Recommended designs will be consistent with the SWMM, or where new stormwater practices are recommended through the TSP update, proposed modifications to the SWMM will be recommended.

IRANSPORTATION PLANNING RULE

The city of Stayton is undertaking an update of the 2004 Transportation System Plan (TSP) consistent with the requirements of Statewide Planning Goal 12 - Transportation. The Transportation Planning Rule (TPR), Oregon Administrative Rule 660, Division 12, defines the necessary elements of a local Transportation System Plan (TSP) and how to implement Goal 12. The overall purpose of the TPR is to provide and encourage a safe, convenient, and economic transportation system. The rule also implements provisions of other statewide planning goals related to transportation planning in order to plan and develop transportation facilities and services in close coordination with urban and rural development. The TPR directs local jurisdictions to integrate comprehensive land use planning with transportation needs and to promote multi-modal systems that make it more convenient for people to walk, bicycle, use transit, and drive less. Stayton's TSP must be consistent with the current TPR, which was amended most recently in December 2011.

Table 1 describes how the Land Use and Development Code, codified as Title 17 of the Stayton Municipal Code, meet particular TPR sections. The table also identifies recommended modifications that may be necessary to implement the updated TSP and recommends where local requirements could be strengthened to be more consistent with the TPR. To the extent necessary, suggested draft code language will be prepared at the implementation phase of the TSP update project, consistent with the policies and recommendations of the draft TSP.

Table 1: TPR Review

Requirement

OAR 660-012-0045 - Implementation of the Transportation System Plan
(1) Each local government shall amend its land use regulations to implement the TSP.
(a) The following transportation facilities, services and improvements need not be subject to land use regulations except as necessary to implement the TSP and, under ordinary circumstances do not have a significant impact on land use:
(A) Operation, maintenance, and repair of existing transportation facilities identified in the TSP, such as road, bicycle, pedestrian, port, airport and rail facilities, and major regional pipelines and terminals;

The purpose of this provision is to allow for certain transportation uses, such as operation, maintenance, and repair of transportation facilities identified in the TSP, without being subject to land use regulations.

Section 17.26.060 describes transportation improvements that are permitted outright. This section states that installation of utilities, normal operation/maintenance/repair of transportation facilities are permitted outright. Where a project is specifically identified in the TSP as not requiring further land use regulation, or acquisition of ROW for TSP facilities are also permitted outright.

Requirement

(B) Dedication of right-of-way, authorization of construction and the construction of facilities and improvements, where the improvements are consistent with clear and objective dimensional standards;
(C) Uses permitted outright under ORS 215.213(1)(m) through (p) and 215.283(l)(k) through (n), consistent with the provisions of 660-012-0065; and
(D) Changes in the frequency of transit, rail and airport services.
(b) To the extent, if any, that a transportation facility, service, or improvement concerns the application of a comprehensive plan provision or land use regulation, it may be allowed without further land use review if it is permitted outright or if it is subject to standards that do not require interpretation or the exercise of factual, policy or legal judgment.
(c) In the event that a transportation facility, service or improvement is determined to have a significant impact on land use or requires interpretation or the exercise of factual, policy or legal judgment, the local government shall provide a review and approval process that is consistent with 660-012-0050. To facilitate implementation of the TSP, each local government shall amend regulations to provide for consolidated review of land use decisions required to permit a transportation project.

```
Land Use and Development Code References and Recommendations
```


This TPR provision is met.

For clarity, consider adding "Transportation improvements consistent with the TSP" as a permitted use, and those that are not within the TSP as conditional uses, in Table 17.16.070.1

A reference to Section 17.26 .060 may also be appropriate.

This TPR Section references project development and implementation - how a transportation facility or improvement authorized in a TSP is designed and constructed (660-012-0050). Project development may or may not require land use decision-making. The TPR directs that during project development, projects authorized in an acknowledged TSP will not be subject to further justification with regard to their need, mode, function, or general location. To this end, the TPR calls for consolidated review of land use decisions and proper noticing requirements for affected transportation facilities and service providers.

Section 17.12.040 states that "Combined or multiple requests...for approvals of different land use and development permits...shall be considered concurrently by the City."

This TPR provision is met.
(2) Local governments shall adopt land use or subdivision ordinance regulations, consistent with applicable federal and state requirements, to protect transportation facilities corridors and sites for their identified functions. Such regulations shall include:
(a) Access control measures, for example, driveway and public road spacing, median control and signal spacing standards, which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;
(b) Standards to protect the future operations of roads, transitways and major transit corridors

| |
| :--- | :--- |

(c) Measures to protect public use airports by controlling land uses within airport noise corridors and imaginary

Table 17.26.020.3.h lists standards for public intersection spacing and driveways and/or street spacing based on the functional classification of the roadway.
Section 17.26.020.3.i addresses access management spacing for the Highway 22 Terminal Ramps Control Zone, referencing OAR 734-051-0010.
Recommendation: The TSP update process may identify new or updated roadway and access management standards. Table 17.26.020.3.h. should be updated to reflect these changes, or should reference the requirements in the TSP.

Section 17.26.020.6 addresses development review procedure for access management, ensuring that access is consistent with access management standards adopted within the TSP. It also states that "Any application that involves access to the State Highway System shall be reviewed by the Oregon Department of Transportation for conformance with state access management standards. Any application that involves access to Marion County's roadway system shall be reviewed by City of Stayton staff for conformance with City of Stayton access management standards."
Section 17.26 .050 includes transportation impact analysis requirements that help protect future operations of the transportation system.

Recommendation: As part of TSP implementation, review the thresholds for requiring a Transportation Impact Analysis (Section 1., When a Transportation Impact Analysis is Required) and if necessary modify Section 17.26.050 to reflect future City needs.

Stayton does not have a public-use airport.
This TPR provision is met. and Recommendations
surfaces, and by limiting physical hazards to air navigation;
(d) A process for coordinated review of future land use decisions affecting transportation facilities, corridors or sites;
(e) A process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities, corridors or sites;
(f) Regulations to provide notice to public agencies providing transportation facilities and services, MPOs, and ODOT of:
(A) Land use applications that require public hearings;
(B) Subdivision and partition applications;
(C)Other applications which affect private access to roads; and
(D)Other applications within airport noise corridor and imaginary surfaces which affect airport operations.
(g) Regulations assuring amendments to land use designations, densities, and design standards are consistent with the functions, capacities and performance standards of facilities identified in the TSP.

See response to -0045(1)(c).

This TPR provision is met.

Section 17.26.050.12 states that "as part of every land use action, the City of Stayton, Marion County... and ODOT...will be required to identify conditions of approval needed to meet operations and safety standards and provide the necessary right-of-way and improvements to develop the future planned transportation system."

This TPR provision is met.

Section 17.12.050.3 states: For purposes of planning coordination, the City staff shall provide to local, state, and federal agencies likely to be impacted by the proposal or entitled to receive such notice under law, referrals of the request with an explanation of the character of the proposal. This referral will be made within 5 days of application acceptance. Agencies so contacted will be requested to reply within 12 days of mailing of the referral, and will be notified that failure to reply or participate in the hearing may be interpreted as no objection to the proposal.

This TPR provision is met.

Section 17.12.170 describes the process for comprehensive plan amendments, which include a transportation impact analysis, and approval criteria includes "Existing or anticipated transportation facilities are adequate... and proposed amendment is in conformance with the (TPR)."
17.12.180 describes the process for zoning map amendments, with the same requirements listed above.
Recommendation: Include references to the adopted TSP in Sections 17.12.70 and 17.12.80 and add requirements ensuring conformance

Land Use and Development Code References and Recommendations

with the TPR to Section 17.12.175, Land Use Code Amendments. (See recommendation under 660-012-0060.)
(3) Local governments shall adopt land use or subdivision regulations for urban areas and rural communities as set forth below.
(a) Bicycle parking facilities as part of new multi-family residential developments of four units or more, new retail, office and institutional developments, and all transit transfer stations and park-and-ride lots.
(b) On-site facilities shall be provided which accommodate safe and convenient pedestrian and bicycle access from within new subdivisions, multi-family developments, planned developments, shopping centers, and commercial districts to adjacent residential areas and transit stops, and to neighborhood activity centers within one-half mile of the development. Single-family residential developments shall generally include streets and accessways. Pedestrian circulation through parking lots should generally be provided in the form of accessways.
(A) "Neighborhood activity centers" includes, but is not limited to, existing or planned schools, parks, shopping areas, transit stops or employment centers;

The title of Section 17.26.030 mentions bicycle parking, however it appears that much of the section has been repealed.
Section 17.20.060 within the Development Standards chapter addresses off-street parking and loading, including bicycle parking. Table 17.20.060.9-A. 1 lists bicycle parking facilities as part of multi-family residential developments (defined as four or more units), commercial, and industrial uses, and transit centers and park-and-ride lots.

Recommendation: The substance of this TPR provision is met, however a cleanup of Section 17.26.030 may be helpful as its current purpose is unclear.

On-site circulation and connections: Section 17.26.020.5 addresses connectivity and circulation standards. It is not clear whether these standards apply only to subdivisions or other kinds of developments as well.

Neighborhood Activity Centers: The code includes a definition of Neighborhood Activity Center that meets this TPR provision, however it is only used with reference to cul-de-sacs within the code.

Parking Lots: 17.20.200 commercial design standards require that, "placing vehicle areas between the street right-of-way and the building's primary entrance will not adversely affect pedestrian safety and convenience." The building's primary entrance is connected to an adjoining street by a pedestrian walkway that meets the standards of Section 17.26.020.5.

Requirement

(B) Bikeways shall be required along arterials and major collectors. sidewalks shall be required along arterials, collectors and most local streets in urban areas except that sidewalks are not required along controlled access roadways, such as freeways;
(C) Cul-de-sacs and other dead-end streets may be used as part of a development plan, consistent with the purposes set forth in this section;
(D) Local governments shall establish their own standards or criteria for providing streets and accessways consistent with the purposes of this section. Such measures may include but are not limited to: standards for spacing of streets or accessways; and standards for excessive out-of-direction travel;
(E) Streets and accessways need not be required where one or more of the following conditions exist:
(i) Physical or topographic conditions make a street or accessway connection impracticable. Such conditions include but are not limited to freeways, railroads, steep slopes, wetlands or other bodies of water where a connection could not reasonably be provided;
(ii) Buildings or other existing development on adjacent lands physically preclude a connection now or in the future considering the potential for redevelopment; or

Land Use and Development Code References and Recommendations

17.20.230 Industrial Design Standards states that "primary building entrances shall have walkways connecting to the street sidewalk."

More detailed requirements for the Downtown area are included, emphasizing an enjoyable pedestrian experience.

Bikeways and sidewalks: Requirements for the construction of streets are addressed in the Public Works Design Standards, which state that bikeways are required along arterials, major collectors.

Cul-de-sacs: Cul-de-sacs are addressed in 17.26.20 - Access Management Requirements and Standards. They are allowed only where certain constraints exist and are required to provide access consistent with the TPR.

Street and accessway layout: Street connectivity and formation of blocks is addressed in 17.26.020 - Access Management Requirements and Standards. Block length minimums and maximums and perimeter maximums are provided for various district in order to promote "efficient vehicular and pedestrian circulation".

Recommendations:

Clarify the applicability of connectivity and circulation standards, ensuring they apply to subdivisions, multifamily developments, planned developments, shopping centers, and commercial centers with Neighborhood Activity Centers in the area.
Consider including street cross-sections in the development code, rather than in the Public Works Design Standards
Consider limited cul-de-sac length and the number of homes accessed.
Include street cross-section standards in the development code, consistent with the updated TSP. Citations to TSP tables and

Requirement

(e) Internal pedestrian circulation within new office parks and commercial developments shall be

Land Use and Development Code References and Recommendations

(c) Off-site road improvements are otherwise required as a condition of development approval, they shall include facilities accommodating convenient pedestrian and bicycle and pedestrian travel, including bicycle ways on arterials and major collectors
(d) For purposes of subsection (b) "safe and convenient" means bicycle and pedestrian routes, facilities and improvements which:
(A) Are reasonably free from hazards, particularly types or levels of automobile traffic
which would interfere with or levels of automobile traffic discourage pedestrian or cycle travel for short trips;
(B) Provide a reasonably direct route of travel between destinations such as between a transit stop and a store; and
(C) Meet travel needs of cyclists and pedestrians considering destination and length of trip; and considering that the optimum trip length of pedestrians is generally $1 / 4$ to 1/2 mile.
(iii) Where streets or accessways would violate provisions of leases, easements, covenants, restrictions or other agreements existing as of May 1, 1995, which preclude a required street or accessway connection.
(d) For purposes of subsection (b)
"safe and convenient" means bicycle
and pedestrian routes, facilities and cycle travel for short trips;
figures are recommended; standards may also be replicated in the code.

Section 17.12 addresses development approval procedures, but does not specifically stipulate that off-site road improvements accommodate bicycle/pedestrian travel.

Recommendation: Consider including language which states that off-site road improvements must accommodate pedestrian and bicycle travel.

Connectivity standards are addressed in 17.26.020.5. They do not specifically mention "safe and convenient" bicycle and pedestrian routes that refer to the conditions listed in this part of the TPR.

Recommendation:

Include additional language in City connectivity standards that specifies acceptable ways to accommodate on-site pedestrian and bicycle routes, consistent with this TPR provision

Section 17.20.11.c addresses pedestrian access in off-street parking areas and includes techniques noted in the TPR. Section 17.20.200

Requirement
provided through clustering of buildings, construction of accessways, walkways and similar techniques.

Land Use and Development Code References and Recommendations

addresses commercial design standards specifically and includes provisions for pedestrian circulation.

This TPR provision is met.

(4) To support transit in urban areas containing a population greater than 25,000 , where the area is already served by a public transit system or where determination has been made that a public transit system is feasible, local governments shall adopt land use and subdivisions as provided in (a)-(g) below.
(a) Transit routes and transit facilities shall be designed to support transit use through provision of bus stops, pullouts and shelters, optimum road geometrics, on-road parking restrictions and similar facilities, as appropriate
(b) New retail, office and institutional buildings at or near major transit stops shall provide for convenient pedestrian access to transit through the measures listed in (A) and (B) below.
(A) Walkways shall be provided connecting building entrances and streets adjoining the site;
(B) Pedestrian connections to adjoining properties shall be provided except where such a connection is impracticable. Pedestrian
connections shall connect the on site circulation system to existing or proposed streets, walkways, and driveways about the property. Where adjacent properties are undeveloped or have potential for redevelopment, streets, accessways and walkways on site shall be laid out

At the time of the most recent TSP adoption (2004), there was no fixed-route transit service within Stayton. Today, Cherriots offers inter-city transit along the Highway 22 corridor, with designated stops in Stayton. The updated TSP will review potential future transit routes and will ensure that standards for these facilities are consistent with this section of the TPR.
Recommendation: Identify design requirements of transit routes and transit facilities through the TSP update process and in coordination with Cherriots transit; update Land Development Code requirements as necessary to be consistent with the TSP.

There are no specific requirements for development near major transit stops within the code today.

Recommendation: The City should consider amending Section 17.20 Development and Improvement Standards to include requirements consistent with TPR 0045(4) (b) (C) for development proposals that are within a certain distance from a major transit stop. How "major" is defined and the locations of these stops will be addressed through the TSP update process.

Requirement

Land Use and Development Code References and Recommendations
or stubbed to allow for extension to the adjoining property;
(C) In addition to (A) and (B) above, on sites at major transit stops provide the following:
(i) Either locate buildings within 20 feet of the transit stop, a transit street or an intersecting street or provide a pedestrian plaza at the transit stop or street intersection;
(ii) A reasonably direct pedestrian connection between the transit stop and building entrances on the site (iii) A transit passenger landing pad accessible to disabled persons (iv) An easement or dedication for a passenger shelter if requested by the transit provide; and (v) Lighting at the transit stop.
(c) Local governments may implement $4(\mathrm{~b}) \mathrm{A})$ and (B) above through the designation of pedestrian districts and adoption of appropriate implementing measures regulating development within pedestrian districts. Pedestrian districts must comply with the requirement of (4)(b)(C) above.
(d) Designated employee parking areas in new developments shall provide preferential parking for carpools and vanpools

The City of Stayton does not currently have pedestrian district designations. Identifying and determining the requirements related to a specific pedestrian district or districts that include existing or planned major transit routes is not an anticipated outcome of the TSP planning project.

Section 17.20.070 addresses off-street parking requirement and loading, but does not include requirements for carpools and vanpools.

Recommendation: The City should consider requiring that new developments with planned designated employee parking areas provide preferential parking for employee carpools and vanpools. A typical local code requirement is requiring employers with more than a specific number of employees to dedicate a percentage of the required parking spaces for car/vanpools.

Alternatively, code provisions could provide optional incentives for reduction in the overall number of required parking spaces for a

Requirement
Land Use and Development Code References and Recommendations
development where transit or car/vanpools are accommodated.

The TSP update will make recommendations to the bicycle and pedestrian plan that are consistent with TPR -0020. This TPR requirement is currently addressed in the following areas:

- Walkways between cul-de-sacs and adjacent roads - See response and recommendations related to cul-de-sacs, Section -0045(3) (b).
- Walkways between buildings - See response and recommendations related to accessways, Section -0045(3)(b).
- Access between adjacent uses - See response and recommendations related to accessways, Section -0045(3)(b).

Recommendation:

This requirement will be addressed by the TSP update planning process and can be met by requiring improvements in developing areas consistent with adopted code provisions.

Street standards are located in the Public Works Design Standards. Local streets have a 60' ROW with 34' pavement width. "Skinny streets" with a narrower 28' pavement width may be approved.

The standard local street width is wider than the recommended widths illustrated in the Transportation Growth Management Neighborhood Street Design Guidelines (listed below).

	Pavement	ROW
No On-Street Parking	20^{\prime}	$42-48^{\prime}$
Parking on One Side	24^{\prime}	$47-52^{\prime}$
Parking on Two Sides	28^{\prime}	$52-56^{\prime}$

Recommendation:

Through the TSP update process the City can reevaluate whether local street width standards can be reduced, or if there are

Requirement	Land Use and Development Code References and Recommendations
	areas or circumstances where a narrower standard may be appropriate.
OAR 660-12-0060	Comprehensive plan, land use code, and zoning amendments are addressed in subsections 17.12.170, 175, and 180, respectively. Subsection 170 and 180 contain language requiring a traffic impact analysis
Amendments to functional plans, acknowledged comprehensive plans, and land use regulations that significantly affect an existing or planned transportation facility shall assure that allowed land uses are consistent with the identified function, capacity, and performance TPR. Subsection 175, which addresses amendments to code language, does not	
contain specific requirements related to	

APPENDIX B: TECH MEMO \#2: GOALS, OBJECTIVES, \&

 EVALUATION CRITERIA
TECHNICAL MEMORANDUM \#2

Date: December 10, 2018
Project \#: 22352
To: Lance Ludwick and Dan Fleishman (City of Stayton)
From: Susan Wright, PE (Kittelson \& Associates, Inc.)
Darci Rudzinski (Angelo Planning Group)
Subject: Goals, Objectives, and Evaluation Criteria

table of CONTENTS

PURPOSE AND INTRODUCTION 1
BACKGROUND 2
EXISTING GOALS 2
PROPSOSED GOALS AND OBJECTIVES 3
PROPOSED EVALUTATION CRITERIA 8

PURPOSE AND INTRODUCTION

This memorandum presents the goals, objectives and evaluation criteria that will be used to guide development of the Stayton Transportation System Plan (TSP) update. The goals and objectives will help guide the TSP update to ensure key issues are addressed within this process. The evaluation criteria will be used to set policies and identify "preferred alternatives," which will comprise the list of recommended projects and associated policy, code amendments, and funding actions in the TSP.

This document is organized as follows:

- Background: This section describes the changes in Stayton following adoption of the 2004 Transportation Master Plan.
- Existing Goals: The current adopted transportation goals from Stayton Comprehensive Plan Chapter 4. Transportation.
- Proposed Goals \& Objectives: The desired project goals address transportation deficiencies and needs that support the city's vision for the next 20 years. The project goals were developed based on an evaluation of the existing goals (2004 Transportation Master Plan and Comprehensive Plan Chapter 4) and the project objectives discussed with City Staff.
- Evaluation Criteria: The proposed evaluation criteria can be for the TSP update process to measure and respond to the project objectives and ultimately to the city's overarching transportation goals.

BACKGROUND

The current TSP was adopted by the City Council in 2004. It was produced during a time of substantial growth that was assumed to continue; growth has been slower than what was projected at plan adoption. For this and other related reasons, there are plan recommendations that no longer seem necessary or feasible within a 20-year planning horizon and these need to be reevaluated and updated. Also, there are recommendations in the adopted plan to improve streets that are county-maintained streets that Marion County no longer supports. In addition, the City updated its comprehensive plan in 2013. The assumptions for development patterns included within the 2004 TSP are not compliant with the City of Stayton Comprehensive Plan Map.

EXISTING GOALS

The current Stayton Comprehensive Plan was last updated in 2013. Chapter 4 of the Comprehensive Plan includes 10 transportation goals, each with associated policies and action items. The 10 adopted TSP goals (Section 3.0) are all represented in the Comprehensive Plan, with some slightly different wording. Most TSP policies are also included in Chapter 4, but these have often been reworded and some live as action items in the Comprehensive Plan. In addition, the Comprehensive Plan includes a policy and three action items associated with the outcomes of the 2006 Sublimity Interchange Area Management Plan (IAMP). The following are the adopted Comprehensive Plan transportation goals with the corresponding goal number and title from the TSP.

- The mobility of Stayton residents and businesses will be maximized by access to a multi-modal transportation system. TSP Goal 1 - Mobility
- The city will create and maintain a multi-modal transportation system with the greatest efficiency of movement possible for Stayton residents and businesses in terms of travel time, travel distance, and efficient management of the transportation system. TSP Goal 2 - Efficiency
- The city will maintain and improve transportation safety. TSP Goal 3 - Safety
- \quad The costs of development of the city's transportation infrastructure and services will be equitably distributed. TSP Goal 4 - Equity
- Environmental impacts associated with traffic and transportation system development will be limited and mitigated. TSP Goal 5 - Environmental
- Use of alternative modes of transportation will be increased. TSP Goal 6 -

Alternative Modes of Transportation

- Transportation improvements will be coordinated with all effected levels of government. TSP Goal 7 - Multi-jurisdiction Coordination
- \quad The transportation system will be planned and maintained, including street design and access standards, based on functional classification. TSP Goal 8 Roadway Functional Classification
- \quad The impacts of truck traffic on local streets will be minimized. TSP Goal 9 Truck Route
- The city will have adequate financial revenues to fund its capital improvement program and maintenance needs. TSP Goal 10 - Transportation Financing

In many respects the City's transportation goals and associated policies continue to provide progressive direction for the community. They emphasize coordination between transportation providers and planning, and funding, for an efficient, multimodal transportation system. However, more active forms of transportation (walking, bicycling, riding transit) are considered separately as "alternative modes" rather than part of an integrated system. In a similar vein, mobility policies narrowly pertain to the street system; enhancing and protecting mobility for all users of the system should be an objective of this TSP update. There are also some community interests that are absent or not well-represented in existing transportation policy. These include objectives related to heath (e.g., effects of heathy transportation, mitigating pollution), community and economic vitality (e.g., freight efficiency, tourism, access to jobs), equity (e.g., access to "active" modes of transportation), and the environment (e.g., using technological solutions to improve mobility/reduce pollution, alternative transportation facility designs to minimize impacts to natural resources).

PROPSOSED GOALS AND OBJECTIVES

Goals provide direction for where a community would like to go; corresponding objectives provide more detail on how to achieve the goal or articulate desired specific outcomes related to the goal. The TSP goals and objectives provide a framework for shaping transportation policies and are the basis for the formation of evaluation criteria to determine which transportation projects, programs, and refinement studies best meet Stayton's needs.

The goals and objectives presented below are intended to guide the TSP update. They are based on an evaluation of the City's adopted transportation goals and policies, as compared to the TSP update's expected outcomes, as well as preliminary direction
provided by the City. The following can also be used to update the goals, policies, and action items in the Comprehensive Plan at the implementation phase of the project.

GOAL 1 - MOBILITY AND EFFICIENCY: OPTIMIZE THE PERFORMANCE OF THE TRANSPORTATION SYSTEM FOR THE EFFICIENT MOVEMENT OF PEOPLE AND GOODS.

OBJECTIVES:

Objective A. Establish a transportation system that can accommodate a wide variety of travel modes and minimizes the reliance on any one single mode of travel.
Objective B. Develop and maintain street functional classifications, along with operational guidance and cross-sectional and right-of-way standards, to ensure streets are able to serve their intended purpose.
Objective C. Review and determine needed standards for mobility to help maintain a minimum level of motor vehicle travel efficiency. State and county mobility standards will be supported on facilities under the respective jurisdiction.
Objective D. Develop an integrated transportation system that includes additional local, collector and arterial roads that improves connectivity across multiple modes, preserves future rights-of-way, and maintains Stayton's existing street grid system.
Objective E. Provide a network of arterials, collectors and local streets that are interconnected, appropriately spaced, and reasonably direct in accordance with city, County and state design standards in order to reduce reliance on any one corridor.
Objective F. Review and update, where necessary, adopted access management standards.

GOAL 2 - SAFETY: PROVIDE A TRANSPORTATION SYSTEM THAT ENHANCES THE SAFETY AND SECURITY OF ALL TRANSPORTATION MODES.

Objecive A. Assess options to reduce traffic volumes and speeds near schools consistent with the Safe Routes to School Plan. Work with the school district and educational institutions to identify and implement circulation and access patterns to and around schools that are safe for pedestrians and bicyclists, as well as people in cars and arriving by bus.
Objecive B. Improve safety and operational components of existing transportation facilities not meeting agency standards or industry best practices.
Objecive C. Address existing safety issues at high collision locations and locations with a history of severe vehicle, bicycle- and/or pedestrian-related crashes.
Objecive D. Develop a traffic calming program for implementation in areas with vehicle speeding issues.

Objecive E. Ensure adequate access for emergency services vehicles throughout the city's transportation system.
Objecive F. Manage access to transportation facilities consistent with their applicable classification to reduce and separate conflicts and provide reasonable access to land uses.
Objecive G. Identify and improve safe crossings for vehicles, bicycles and pedestrians across arterial streets.

GOAL 3 - EQUITY: PROVIDE AN EQUITABLE, BALANCED AND CONNECTED MULTIMODAL TRANSPORTATION SYSTEM.

Objective A. Ensure that the transportation system provides equitable access to underserved and vulnerable populations.
Objective B. Provide connections for all modes that meet applicable city and Americans with Disabilities Act (ADA) standards.
Objective C. Provide for multi-modal circulation internally on site and externally to adjacent land use and existing and planned multi-modal facilities.

GOAL 4 - ENVIRONMENTAL: LIMIT AND MITIGATE ADVERSE ENVIRONMENTAL IMPACTS ASSOCIATED WITH TRAFFIC AND TRANSPORTATION SYSTEM DEVELOPMENT.

Objective A. Identify environmental impacts related to transportation projects at the earliest opportunity to ensure compliance with all federal and state environmental standards.
Objective B. Avoid or minimize impacts to natural resources, which may include alternative transportation facility designs in constrained areas.
Objective C. Reduce the number of vehicle-miles traveled.
Objective D. Enhance opportunities to increase the number of walking, bicycling, and transit trips in the city.
Objective E. Support alternative vehicle types by identifying potential electric vehicle plug-in stations and developing implementing code provisions.
Objective F. Evaluate and implement, where cost-effective, environmentally friendly materials and design approaches (reducing required pavement width, water reduction and infiltration methods to protect waterways, solar infrastructure, impervious materials).
Objective G. Support technology applications that improve travel mobility and safety with less financial and environmental impact than traditional infrastructure projects.
Objective H. Roadways within Stayton shall be multi-modal or "complete streets," with each street servicing the needs of the various modes of travel.

GOAL 5 - MULTI-JURISDICTION COORDINATION: DEVELOP AND MAINTAIN A TRANSPORTATION SYSTEM PLAN THAT IS CONSISTENT WITH THE GOALS AND OBJECTIVES OF THE CITY, MARION COUNTY, AND THE STATE.

Objective A. Coordinate with regional transit service efforts and seek improvements to public transit services to the City of Stayton.
Objective B. Ensure consistency with state, regional and local planning rules, regulations, and standards.
Objective C. Coordinate land use, financial, and environmental planning to prioritize strategic transportation investments.

GOAL 6 - STRATEGIC TRANSPORTATION FINANCING: SEEK FUNDING FOR AND INVEST IN FINANCIALLY FEASIBLE INFRASTRUCTURE PROJECTS THAT WILL SERVE THE CITY FOR YEARS TO COME.

Objective A. Preserve and protect the function of locally and regionally significant transportation corridors.
Objective B. Develop and support reasonable alternative mobility targets for motor vehicles that align with economic and physical limitations on state highways and city streets where necessary.
Objective C. Preserve and maintain the existing transportation system assets to extend their useful life.
Objective D. Improve travel reliability and efficiency of existing major travel routes in the city before adding capacity.
Objective E. Pursue grants and collaboration with other agencies to efficiently fund transportation improvements and supporting programs.
Objective F. Identify and maintain stable and diverse revenue sources to meet the need for transportation investments in the city.
Objective G. Identify new and creative funding sources to leverage high priority transportation projects.
Objective H. Review existing development requirements related to traffic impact study submittal requirements and criteria to ensure that future developments will be responsible for mitigating their direct traffic impacts
Objective I. Upon TSP adoption, update the current transportation system development charge methodology and update the current list of SDCeligible projects.

GOAL 7 - HEALTH: PROVIDE A TRANSPORTATION SYSTEM THAT ENHANCES THE HEALTH OF RESIDENTS AND USERS.

Objective A. Identify and seek funding for programs that encourage walking and bicycling and rideshare/carpool through community awareness and education.
Objective B. Identify and seek funding for programs that provide education regarding good traffic behavior and consideration for all users.
Objective C. Provide convenient and direct pedestrian and bicycle facilities and routes to promote health and the physical and social well-being of [jurisdiction] residents, to reduce vehicular traffic congestion, to provide community and recreational alternatives, and to support economic development.
Objective D. Ensure that the findings of recent studies [Health Impact Assessments, Road Safety Audits, etc.] inform transportation system planning and strategic investment.
Objective E. Plan for a multi-modal system that limits users' exposure to pollution and that enhances air quality.

GOAL 8- LAND USE AND TRANSPORTATION INTEGRATION: CREATE A BALANCED BUILT ENVIRONMENT WHERE DESIRED EXISTING AND PLANNED LAND USES ARE SUPPORTED BY AN EFFICIENT MULTI-MODAL TRANSPORTATION SYSTEM.

Objective A. Identify areas where encouraging more compact, walkable, mixed use, and/or transit-oriented development could significantly shorten trip lengths or reduce the need for motor vehicle travel within the city.
Objective B. Identify the 20-year roadway system needs to accommodate developing or undeveloped areas; ensure adequate capacity for future travel demand and minimize travel times.
Objective C. Review and revise where necessary local land use and development requirements to ensure that future land use decisions are consistent with the planned transportation system.
Objective D. Review and incorporate appropriate access management and land use measures consistent with the recommendations of the Sublimity Interchange Area Management Plan (IAMP).

GOAL 9 - COMMUNITY AND ECONOMIC VITALITY: PROVIDE A TRANSPORTATION SYSTEM THAT SUPPORTS EXISTING INDUSTRY AND ENCOURAGES ECONOMIC DEVELOPMENT IN THE CITY.

Objective A. Develop a plan for designated truck routes through the City that prioritize efficient fright movement and minimize truck traffic on other city roadways.

Objective B. Improve the movement of goods and delivery of services throughout the city while balancing the needs of all users with a variety of travel modes and preserving livability in residential areas and established neighborhoods.
Objective C. Identify lower cost options or provide funding mechanisms for transportation improvements necessary for development to occur.
Objective D. Program transportation improvements to facilitate the development of desired land uses and activities.
Objective E. Encourage recreational tourism by developing connections to and between major recreational locations and destinations and key services in the city.
Objective F. Encourage tourism by promoting and upgrading bicycle and pedestrian recreational routes and services through the city.

PROPOSED EVALUTATION CRITERIA

The proposed evaluation criteria are based on the proposed goals and objectives. A qualitative process using the evaluation criteria will be used to evaluate solutions and prioritize projects developed through the TSP update. The rating method used to evaluate the solutions is described below.

- Most Desirable: The concept addresses the criterion and/or makes substantial improvements in the criteria category. (+1)
- No Effect: The criterion does not apply to the concept or the concept has no influence on the criteria. (0)
- Least Desirable: The concept does not support the intent of and/or negatively impacts the criteria category. (-1)
At this level of screening, the criteria will not be weighted; the ratings will be used to inform discussions about the benefits and tradeoffs of each solution. Table 1 presents the evaluation criteria that will be used to qualitatively evaluate the solutions developed through the TSP update.

Table 1: Evaluation Criteria

Objective	Evaluation Criteria	Evaluation Score
Goal 1: Mobility and Efficiency		
Objective A	Could reduce reliance on any one single travel mode	+1
	Would not reduce reliance on any one single travel mode	0
	Could increase reliance on any one single travel mode	-1
Objective D	Will improve connectivity across travel modes	+1
	Will not improve connectivity across travel modes	0
	Will reduce connectivity across travel modes	-1
Objective E	Could reduce reliance on any one corridor	+1
	Would not impact reliance on any one corridor	0
	Could increase reliance on any one corridor	-1
Goal 2: Safety		
Objective C	Will address a known safety issue	+1
	Will not address a known safety issue	0
	Could worsen a known safety issue	-1
Objective E	Will improve access for emergency services vehicles	+1
	Will not improve access for emergency service vehicles	0
	Will reduce or limit access for emergency service vehicle	-1
Objective F	Will reduce potential for future conflicts	+1
	Will have no impact on the potential for future conflicts	0
	Will increase the potential for future conflicts	-1
Goal 3: Equity		
Objective A	Will improve access for underserved and vulnerable populations	+1
	Will not improve access for underserved and vulnerable populations	0
	Will reduce or limit access for underserved and vulnerable populations	-1
Goal 4: Multi-Jurisdiction Coordination		
Objective B	Will not impact natural resources	+1
	Will have a minimal impact to natural resources	0
	Will have a significant impact to natural resources	-1
Objective C	Could reduce the number of vehicle miles traveled	+1
	Would not change the number of vehicle miles traveled	0
	Could increase the number of vehicle miles traveled	-1
Objective E	Will support alternative vehicle types	+1
	Will not support alternative vehicle types	0
	Will reduce or limit opportunities for alternative vehicle types	-1
Goal 5: Strategic Investment		
Objective B	Is consistent with state, regional, and local planning	+1
	Is not impacted by or reflected in state, regional, and/or local planning	0
	Is inconsistent with state, regional, and/or local planning	-1
Goal 6: Strategic Transportation Financing		
Objective A	Will preserve and protect the function of locally and/or regionally significant corridors	+1
	Will not impact locally and/or regionally significant corridors	0
	Will degrade the function of locally and/or regionally significant corridors	-1
Objective D	Will improve travel reliability and efficiency of major travel routes	+1
	Will not impact travel reliability and efficiency of major travel routes	0
	Will degrade travel reliability and efficiency of major travel routes	-1
Goal 7: Healih		
Objective A, B, an C	Could encourage the use of active modes of transportation	+1
	Would not encourage the use of active modes of transportation	0
	Could discourage the use of active modes of transportation	-1

Objective	Evaluation Criteria	Evaluation Score
Objective D	Will contribute to the development of a multi-modal system	+1
	Will not contribute to the development of a multi-modal system	0
	Will impede development of a multi-modal transportation system	-1
	Goal 8: Land Use and Iransportation Integration	
Objective A	Will encourage more compact, walkable, mixed-use and/or transitoriented development	+1
	Will not encourage more compact, walkable, mixed-use and/or transitoriented development	0
	Will discourage more compact, walkable, mixed-use and/or transitoriented development	-1
	Goal 9: Community and Economic Vitality	
Objective B	Could improve the movement of goods and delivery of services	+1
	Would not improve the movement of goods and delivery of services	0
	Could impede the movement of goods and delivery of services	-1
Objective E and F	Could encourage tourism and/or recreational tourism	+1
	Would not encourage tourism and/or recreational tourism	0
	Could discourage tourism and/or recreational tourism	-1

APPENDIX C: TECH MEMO \#3: EXISTING AND FUTURE CONDITIONS

TECHNICAL MEMORANDUM \#3

Date: October 9, 2018
Project \#: 22352
To: Lance Ludwick and Dan Fleishman (City of Stayton)
From: Susan Wright, PE (Kittelson \& Associates, Inc.)
Darci Rudzinski (Angelo Planning Group)

Subject: Existing and Future Conditions Memo

TABLE OF CONTENTS

Table of Contents ... 1
Purpose and Introduction .. 1
Existing Transportation System ... 3
Existing Conditions Analysis .. 16
Environmental Justice Analysis .. 27
Future Growth Assumptions.. 35
Future Conditions Analysis .. 36
Transportation Funding ... 40
References .. 46
Appendices... 46

PURPOSE AND INTRODUCIION

This memorandum assesses existing and future conditions and planned improvements for all transportation systems and services within the City of Stayton. Figure 1 illustrates the study area, including the city boundary and urban growth boundary (UGB). The information presented in this memorandum will serve as a baseline for evaluating transportation system needs and identifying

IN THIS MEMO

- Existing Operations and Safety
- Future Growth and Operations
- Funding Overview

potential solutions for the Transportation System Plan (TSP) update. The information is based on an inventory of existing transportation facilities and services and discussions with City staff. The information has also been updated based on input from the project advisory committee (PAC) and technical advisory committee (TAC), and will be updated based on input received from a public workshop.

This memorandum includes information on the existing motor vehicle, pedestrian, bicycle, and public transit modes within the city. This memorandum also includes information on existing operations and safety conditions within the city and an environmental justice analysis of city demographics. Lastly, it includes an operations analysis of the future forecast and a funding sources review.

EXISTING TRANSPORTATION SYSTEM

The transportation system of Stayton includes motor vehicle, pedestrian, bicycle, public transportation, and other transportation systems. Together, these systems allow for Stayton residents to travel the city and reach other cities and towns in the surrounding area. Different parts of the City of Stayton's transportation system are owned, operated, and maintained by various entities, including the Oregon Department of Transportation (ODOT), Marion County, and the City of Stayton.

MOTOR VEHICLE SYSTEM

The motor vehicle system within Stayton includes private streets, city streets, county roads, and state highways. These facilities provide residents with the ability to access retail, commercial, recreational, and other land uses within Stayton and neighboring cities by vehicle. This section describes how the system has been developed to date and provides a review of how it is used and operated.

JURISDICTION

The streets within Stayton are owned and operated by the City of Stayton, Marion County, and the Oregon Department of Transportation (ODOT). Each jurisdiction is responsible for determining the functional classification of the streets, defining major design and multimodal features, and approving construction and access permits. Coordination is required among the jurisdictions to ensure that the streets are planned, operated, maintained, and improved to safely meet public needs. Figure 2 illustrates the jurisdiction (ownership and maintenance responsibilities) of streets within Stayton.

ODOT owns OR 22, the highest-volume roadway in Stayton. Marion County owns many of the major roads within the city, including Golf Club Road, N First Avenue, Wilco Road, and Shaff Road. The City of Stayton owns the remaining public roadways within the urban area. Some of the roadways in the city are classified as private.

FUNCTIONAL CLASSIFICATION

A street's functional classification defines its role in the overall transportation system and defines the operational and design characteristics of the roadway, such as right-of-way requirements, pavement widths, pedestrian and bicycle features, and driveway spacing standards. The functional classifications of the streets within Stayton are shown in Figure 3. Descriptions of each type of functional classification can be found below.

Note that these classifications represent an update from the five classifications shown in the 2004 TSP: Principal arterial, minor arterial, major collector, minor collector, and local. The classifications shown below represent a way to further classify local streets and better prioritize maintenance of city-maintained streets.

Arterials

Arterials are roadways that are designed to facilitate traffic entering and leaving the urban area. The main function of arterials is to efficiently move traffic, although they may provide access to adjacent land uses. Arterials typically focus on longer distance trips than other roadways, with the goal of moving high volumes of traffic through as efficiently as possible. Principal Arterials typically have limited access and higher traffic speeds than other facilities except when traveling through a downtown area. Principal Arterials are usually served by other Arterials.

Collectors

Collector roadways facilitate the movement of city traffic within the urban area. Collectors provide some degree of access to adjacent properties, while maintaining circulation and mobility for all users. Collectors can be two or three-lane facilities and are used to connect the various roadways of an urban area, although they are designed to carry lower traffic volumes at lower speeds than arterials.

Neighborhood Collectors

The function of Neighborhood Collectors is to connect neighborhoods with collectors and arterials, facilitate the movement of local traffic and provide access to abutting land uses. Speed on these facilities should remain low to ensure community livability and safety for pedestrians and bicyclists of all ages. On-street parking is more prevalent and pedestrian amenities are typically provided. Striped bike lanes are unnecessary for most neighborhood streets because the traffic volumes and speeds should allow cyclists to share the road with the motorists.

Local Streets

The goal of Local Streets is to provide access to adjacent land uses. These streets offer the lowest level of mobility and consequently tend to be short, low-speed facilities. As such, local streets should primarily serve passenger cars, pedestrians, and bicyclists; heavy truck traffic should be discouraged. On-street parking is common and sidewalks are typically present. The Local Streets within Stayton can be split into three categories: Industrial, Commercial, and Residential Local roadways, with all three categories providing access to their respective land uses. Table 1 summarizes the functional

Functional Roadway Classification Stayton, Oregon

Figure
3
classification of the principal arterial, arterial, and collector streets within Stayton and the overlapping jurisdictional relationships that exist.

Table 1. Functional Classification of Collector and Higher Streets by Jurisdiction

Roadway	Roadway Extents	Jurisdiction	Functional Classification
OR 22	Western UGB limits to eastern UGB limits	ODOT	Principal Arterial OHP Statewide Highway NHS State Highway
Golf Club Road	OR 22 to Shaff Road	County	Arterial
Wilco Road	Shaff Road to Deschutes Drive	County	Collector
	Deschutes Drive to W Washington Street	County	Arterial
Cascade Highway	OR 22 to Shaff Road	County	Principal Arterial
N First Avenue	Shaff Road to W Ida Street	County	Principal Arterial
	W Ida Street to W Water Street	County	Arterial
S First Avenue	W Water Street to southern UGB limits	County	Arterial
N Sixth Avenue	E Jefferson Street to E Washington Street	County	Arterial
N Tenth Avenue	E Santiam Street to E Jefferson Street	County	Arterial
Shaff Road	Western UGB limits to Golf Club Road	County	Collector
	Golf Club Road to Cascade Highway	County	Arterial
Fern Ridge Road	N Tenth Avenue to OR 22	County	Collector
E Washington Street	N First Avenue to N Sixth Avenue	County	Arterial
E Jefferson Street	N Sixth Avenue to N Tenth Avenue	County	Arterial
E Santiam Street	N Scenic View Drive to OR 22	County	Collector
Stayton Road	Western UGB limits to Rogue Avenue	County	Arterial
E Santiam Street	N Tenth Avenue to N Scenic View Drive	County	Collector
Kindle Way	Northern terminus to Shaff Road	City	Collector
Gardner Avenue	Shaff Road to W Washington Street	City	Collector
N Tenth Avenue	Fern Ridge Road to E Santiam Street	City	Collector
Eagle Street	Quail Run Avenue to Kindle Way	City	Collector
Fern Ridge Road	Cascade Highway to N Tenth Avenue	City	Collector
W Locust Street	Wilco Road to N First Avenue	City	Collector
W Ida Street	Wilco Road to N First Avenue	City	Collector

ROADWAY CHARACTERISTICS

The characteristics of Principal Arterial, Arterial, and Collector Streets are summarized in Table 2. The data includes posted speed limits, street widths, number of lanes, lane widths, on-street bike lanes, and on-street parking. These characteristics define roadway capacity and operating speeds through the street system, which affects travel path choices for drivers in Stayton.

Table 2: Roadway Characteristics by Functional Classification

| Corridor | Posted Speed
 (mph) | Number of
 Lanes | Lane Width (ft) | On-Street Bike
 Lanes | On-Street
 Parking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OR 22 | 55 | $2-4$ | 12 | No | No |
| Cascade Highway | 45 | $2-3$ | 11 | Yes | No |
| First Avenue | 30 | $2-3$ | 12 | No | No |
| Golf Club Road | 45 | 2 | 12 | No | No |
| Wilco Road | 45 | 2 | 11 | No | No |
| N First Avenue | 30 | 2 | 13 | No | No |
| S First Avenue | 30 | 2 | 12 | No | No |
| N Sixth Avenue | 25 | 2 | 12 | No | No |
| N Tenth Avenue | 25 | 2 | 10 | No | No |
| Shaff Road | 35^{1} | 2 | 11 | No | No |
| E Washington Street | 25^{1} | 2 | 11 | No | No |
| E Jefferson Street | 25 | 2 | 10 | No | No |
| Stayton Road | 45 | 2 | 12 | No | No |
| Wilco Road | 45 | 2 | 12 | No | No |
| Shaff Road | 35 | 2 | 10 | No | No |

Corridor	Posted Speed (mph)	Number of Lanes	Lane Width (ft)	On-Street Bike Lanes	On-Street Parking
Fern Ridge Road	35	2	13	Yes	No
E Santiam Street	55	2	10	No	No
E Santiam Street	40	2	11	No	No
Kindle Way	25	2	10	No	No
Gardner Avenue	25^{1}	2	13	Yes	No
N Tenth Avenue	25	2	10	Yes	No
W Locust Street	25^{1}	2	10	No	Yes
W Ida Street	30	1	13	No	Yes

${ }^{1}$ A 20 mph school zone exists on part of this roadway

PEDESTRIAN SYSTEM

The pedestrian system of Stayton consists of sidewalks, enhanced sidewalks, off-street trails, and pedestrian crossings, which are both marked and unmarked; signalized and unsignalized. These facilities provide residents with the ability to access local retail/commercial centers, recreational areas, schools, and other land uses by foot. A safe, convenient, and continuous network of pedestrian facilities is essential to establishing a vibrant and healthy community while supporting the local economy within Stayton. The existing pedestrian facilities are shown in Figure 4.

Sidewalks

Sidewalks are provided along at least one side of most of the roadways categorized as collector or higher within the city of Stayton. However, there a few notable "sidewalk gaps", or segments along roadways where there is no sidewalk. These sidewalk gaps are also shown in Figure 4. Notable sidewalk gaps occur on segments of W Washington Street, Shaff Road, N Third Avenue, N Tenth Avenue, Kindle Way, and Locust Street.

Off-Road Trails

Off-road trails are also present in Stayton. These trails range from multi-use paved paths to gravel trails. The following off-road trails exist within Stayton:

- The trails throughout Wilderness Park, which are a mix between paved and gravel.
- The trails on the Stayton Middle School Campus, which are mostly gravel.
- The path in and around Santiam Park, which is paved.
- The paths within Community Center Park, which are paved.
- The path near the Santiam Memorial Hospital, which is paved.

PEDESTRIAN QUALITATIVE LEVEL OF SERVICE (QLOS)

A Pedestrian Qualitative Level of Service (QLOS) analysis examines and scores the characteristics of sidewalk segments. The possible scores for a sidewalk segment are Good, Fair, and Poor. The QLOS judges a sidewalk segment on the presence of a sidewalk/path, lighting, and buffers, as well as the widths of the sidewalk and of the outside travel lane. The QLOS analysis for sidewalk segments along roadways of classification collector or higher within Stayton is shown in Table 3.

Existing Pedestrian Facilities
Stayton, Oregon

Table 3: Qualitative LOS for Sidewalks Along Roadways of Classification Collector or Higher

Roadway	Roadway Extents	Qualitative Level of Service
Golf Club Road	OR 22 to Shaff Road	Poor
Wilco Road	Shaff Road to W Washington Street	Poor
Cascade Highway	OR 22 to Shaff Road	Good
N First Avenue	Shaff Road to W Ida Street	Fair
S First Avenue	W Ida Street to southern UGB limits	Poor
N Sixth Avenue	E Jefferson Street to E Washington Street	Good
N Tenth Avenue	E Santiam Street to E Jefferson Street	Good
Shaff Road	Golf Club Road to Cascade Highway	Fair
Fern Ridge Road	Cascade Highway to N Tenth Avenue	Fair
	N Tenth Avenue to OR 22	Poor
E Washington Street	N First Avenue to N Sixth Avenue	Fair
E Jefferson Street	N Sixth Avenue to N Tenth Avenue	Fair
E Santiam Street	N Scenic View Drive to OR 22	Poor
Stayton Road	Western UGB limits to Rogue Avenue	Poor
E Santiam Street	N Tenth Avenue to N Scenic View Drive	Poor-Fair
Kindle Way	northern terminus to Shaff Road	Fair
Gardner Avenue	Shaff Road to W Washington Street	Fair
W Locust Street	Wilco Road to N First Avenue	Fair
W Ida Street	Wilco Road to N First Avenue	Fair

BICYCLE SYSTEM

The bicycle system within Stayton consists of on-street bike lanes, off street trails, enhanced sidewalks, other off-street bicycle facilities, and bicycle parking. These facilities provide residents with the ability to access local retail/commercial centers, recreational areas, and other land uses within Stayton by bicycle. A safe, convenient, and continuous network of bicycle facilities is essential to establishing a vibrant and healthy community while supporting the local economy within the City. Stayton currently does not have any bikeways listed on the Oregon State Parks Scenic Bikeways list, the Mid-Valley Bike Transportation map, or the Willamette Valley Scenic Bikeway list.

BICYCLE FACILITIES

To assess the adequacy of bicycle facilities in Stayton, GIS data of existing bicycle facilities was obtained from the City. Figure 5 shows the existing bicycle facilities within Stayton. The following provides a summary of the facilities, including existing gaps and deficiencies.

Existing Bicycle Facilities Stayton, Oregon

Bicycle Lanes

On-street bike lanes are provided along five roadway segments in Stayton. Bike lanes are present along Gardner Avenue from Shaff Road to W Darby Street, Cascade Highway from OR 22 to Shaff Road, N Tenth Avenue from Fern Ridge Road to E Santiam Street, Shaff Road from Golf Club Road to Kindle Way, and Fern Ridge Road from Cascade Highway to the eastern city limits.

Enhanced Sidewalks

Enhanced sidewalks are wide, separated facilities that can be used for walking or bicycling. Enhanced sidewalks are present along both sides of Shaff Road intermittently between Wilco Road and Oakmont Lane.

Shared Roadways

Some of the roadways within Stayton have shoulders, which, when wide enough, can act as a bicycle lane. The shoulders allow bicyclist to ride in a lane separated from traffic, which allows motor vehicles to pass safely. Shoulder bikeways aren't always ideal, however, as there are sometimes motor vehicles parked in the shoulder and there is oftentimes debris within the shoulder.

Off-Street Trails

Many of the trails available for pedestrians are also available to cyclists. Exceptions include Pioneer Park, Wilderness Park, Riverfront Park, and trails near the Mill Creek River. Trails available to cyclists are typically multi-use pared paths.

BICYCLE QUALITATIVE LEVEL OF SERVICE (QLOS)

A Bicycle Qualitative Level of Service (QLOS) analysis examines the characteristics of bicycle facilities and gives them a score. The possible scores for a bicycle facility are Good, Fair, or Poor. The QLOS judges a bicycle facility on the presence of a bicycle lane or "sharrow" markings, width of the bicycle lane (if applicable), volume of roadway, and obstructions present. The QLOS analysis for bicycle facilities along roadways of classification collector or higher within Stayton is shown in Table 4.

Table 4: Qualitative LOS for Bicycle Facilities Along Roadways of Classification Collector or Higher

Roadway	Roadway Extents	Type of Facility	Qualitative Level of Service
Golf Club Road	OR 22 to Shaff Road	No Facility	Poor
Wilco Road	Shaff Road to W Washington Street	No Facility	Poor
Cascade Highway	OR 22 to Shaff Road	Bicycle Lane	Good
N First Avenue	Shaff Road to W Ida Street	No Facility	Poor
S First Avenue	Shaff Road to southern city limits	Shoulder Bikeway	Poor
N Sixth Avenue	E Jefferson Road to E Washington Street	Shoulder Bikeway	Fair
N Tenth Avenue	E Santiam Street to E Jefferson Street	Bicycle Lane	Good
Shaff Road	Golf Club Road to Oakmont Lane	Bicycle Lane/ Enhanced Sidewalk	
Shaff Road	Oakmont Lane to Cascade Highway	No Facility	Poor
Fern Ridge Road	Cascade Highway to OR 22	Bicycle Lane	Good

Roadway	Roadway Extents	Type of Facility	Qualitative Level of Service
E Washington Street	N First Avenue to N Sixth Avenue	Shoulder Bikeway	Fair 1
E Jefferson Street	N Sixth Avenue to N Tenth Avenue	Shoulder Bikeway	Fair ${ }^{1}$
E Santiam Street	N Scenic View Drive to OR 22	No Facility	Poor
Stayton Road	Western UGB limits to Rogue Avenue	No Facility	Poor
E Santiam Street	N Tenth Avenue to N Scenic View Drive	No Facility	Poor
Kindle Way	Northern terminus to Shaff Road	Low-Stress Facility	Fair
Gardner Avenue	Shaff Road to W Washington Street	Bicycle Lane	Good
W Locust Street	Wilco Road to N First Avenue	No Facility	Poor-Fair
W Ida Street	Wilco Road to N First Avenue	No Facility	Poor-Fair

${ }^{1}$ The public advisory committee noted that on-street parking makes bicycling more difficult on the shoulder bikeways on these roads

PUBLIC TRANSPORTATION SYSTEM

Public transportation service in Stayton is provided by Cherriots and the North Santiam School District. Transit provides residents the ability to access grocery, retail, and social opportunities within Stayton as well as to access Sublimity, Salem, and other surrounding towns. It also provides schoolchildren access to school.

TRANSIT SERVICES

Transit services within Stayton consist of fixed-route and school bus services.

Fixed Route Service

Cherriots Route 30X is a fixed route bus service that runs from Salem to Gates. The bus makes three stops within the city boundary of Stayton and two stops just north of the urban area. Cherriots Route 30X services each of these bus stops four times per day in both directions. The bus does not operate on weekends or holidays. The bus route and stop locations are shown in Figure 6.

School Bus Services

The North Santiam School District 29J, which includes Stayton Elementary, Middle, and High Schools, is serviced by the Mid-Columbia Bus Company (MIDCO). MIDCO has an office within Stayton and offers 19 different bus routes for the school district.

TRANSIT INFRASTRUCTURE

Park-and-Ride

There is one park-and-ride location within Stayton, located on Cascade Highway at the intersection of Golf Lane, shown in Figure 6. This park-and-ride is serviced by Cherriots Route 30X and has vehicle parking capacity for 94 vehicles and covered bicycle parking capacity for 5 bicycles.

Transit Stops

There are three transit stops within the Stayton city boundary and two stops just north of the urban area. Stop locations are:

Cherriots Route 30X from Salem to Gates runs four times per weekday in both directions on the route shown. Buses do not operate on holidays or weekends.

Existing Transit Facilities
Stayton, Oregon

Figure

$-\quad$ E Washington Street/N Fourth Avenue in downtown Stayton	
$-\quad$	Stayton Safeway near the intersection of N First Avenue/E Fir Street
$-\quad$	Stayton park-and-ride near the intersection of Cascade Highway SE/Golf
	Lane.

Each of these transit stops are serviced by Cherriots Route 30X and are shown in Figure 6.

Transit Ridership

Daily average ridership for Cherriots Route 30X for April and the first three weeks of May of 2018 is shown in Table 5. This data shows bidirectional boardings and alightings and was collected by Cherriots transit drivers.

Table 5: Cherriots Route 30X Average Daily Ridership

Transit Stop	Boardings	Alightings	Total
Washington Street and Fourth Avenue	6	11	17
Stayton Safeway	25	26	51
Stayton Park-and-Ride	2	4	6
Johnson Street and Starr Road	1	2	3
Stayton DMV	0	0	0

EXISTING GAPS AND DEFICIENCIES

Stayton's current public transportation system does not offer specialized services for seniors or people with disabilities. The discontinued dial-a-ride service provided by CARTS offered a simple transit service for people who found it difficult to use the fixed Cherriots Route 30X. This curb-to-curb service deviated up to 0.75 miles from the fixed route for anyone who made a request with the call center at least 24 hours in advance. While Cherriots currently offers an origin-to-destination transportation service for people whose disabilities prevent them from using the Cherriots buses, this service only operates within the Salem-Keizer urban area. With a senior living center and hospital located in Stayton, this service would supplement the existing transit system for seniors and people with disabilities.

Currently, Cherriots Route 30X only services each transit stop four times per day. Increasing the frequency of buses along this route would encourage more transit ridership, as riders would have more options for the timing of their trips.

While transit schedule information is available online, schedules are not provided at stops and real-time arrival and departure information is not available online or at transit stops in Stayton. Providing real-time data online via a phone app or using digital screens or announcements would help inform riders about bus arrivals and service delays and improve customer satisfaction. Since the Cherriots Route 30X only services each stop four times a day, missing a bus currently delays a rider's trip substantially. Thus, knowing real-time information about bus arrival times would assist riders in
planning their trips. Additionally, posting schedules at stops would make bus arrival time knowledge more readily available for those without access to smartphones.

FREIGHT SYSTEM

OR 22 is designated as a statewide National Highway System freight route by the 1999 Oregon Highway Plan (OHP).

OTHER TRANSPORTATION MODES

The following describes the other modes of transportation within Stayton including air, water, and natural gas pipeline facilities.

PRIVATE TRANSPORTATION PROVIDERS

Uber and Lyft both operate in the City of Stayton. They provide on-demand taxi services through a mobile phone application.

AIR TRANSPORTATION

The City of Stayton does not have an airport. The nearest commercial airport is the Portland International Airport, located 75 miles to the north of Stayton. There are several other small airstrips within 20 miles of Stayton. There is also a helistop located at the Santiam Memorial Hospital.

RAIL TRANSPORTATION

An unused rail spur runs from the west side of the city along W Locust Street to the NORPAC facility. The last rail activity on this line was over five years ago, and NORPAC has not used the line in over twenty years.

WATER TRANSPORTATION

Although the City of Stayton is situated along the North Santiam River, the river has not been used as a method of transportation, mainly due to the shallowness of the river. There are several boat ramps along the river; however, these are mostly used for small watercraft. The river is mainly used for recreation but is also a source of drinking water.

PIPELINE FACILITIES

The primary pipeline facilities in Stayton are associated with the city storm sewer, sanitary sewer, and water lines. Potable water is transported from the North Santiam River to Salem via two transmission mains that run through Stayton. There are no natural gas lines that are large enough to be classified as pipelines in the Stayton area.

EXISTING CONDITIONS ANALYSIS

TRAFFIC OPERATIONS

Traffic operations were evaluated at 22 study intersections in accordance with the Analysis Methodology and Assumptions Memorandum (Reference 1). Figure 7 shows the study intersections and summarizes the existing lane configurations and traffic control devices.

TRAFFIC VOLUMES

Manual turning movement counts were conducted at the study intersections in April 2018. The counts were conducted on a typical midweek day during the evening (4:00 to 6:00 pm) peak period while Stayton schools were in session. The system-wide peak hour for the study intersections was identified as $4: 40$ to $5: 40 \mathrm{pm}$. Appendix A contains the turning movement counts.

PEAK HOUR OPERATIONS

Figure 8 summarizes the PM peak hour turning movement counts and operations at the study intersections under existing traffic conditions. The through movements of the turning movement counts along OR 22 were seasonally adjusted to 30th highest hour volumes (30HV) in accordance with the Seasonal Trend Table methodology identified in the Analysis Methodology and Assumptions Memorandum. Table 6 summarizes the results of the traffic operations analysis at the study intersection under existing traffic conditions. Appendix B contains the year 2018 existing traffic conditions worksheets.

Table 6. Existing Weekday PM Peak Hour Intersection Operations

\#	Intersection	Level of Service (LOS)	Delay (Sec)	Volume/Capacity (v/c)	Measure of ffectiveness (MOE)		MOE Met?
					Agency	Maximum	
1	Golf Club Road at Sublimity Road/WB OR 22	C	15.4	0.14	ODOT	V/C 0.70 ${ }^{1}$	Yes
2	Golf Club Road at EB OR 22	B	13.0	0.27	ODOT	V/C 0.80^{1}	Yes
3	Golf Club Road at Mill Creek Road	D	30.6	0.19	County	LOS E ${ }^{2}$	Yes
4	Golf Club Road/Wilco Road at Shaff Road	D	20.9	-	County	LOS E ${ }^{2}$	Yes
5	Wilco Road at W Washington Street/Ida Street	B	12.0	-	County	LOS E ${ }^{2}$	Yes
6	Shaff Road at Gardner Road/Stayton Middle School	C	18.8	0.31	County	LOS E ${ }^{2}$	Yes
7	W Washington Street at Gardner Road	B	12.2	0.11	City	LOS E^{3}	Yes
8	Cascade Highway at Sublimity Boulevard/WB OR 22	C	20.6	0.08	ODOT	V/C 0.70^{1}	Yes
9	Cascade Highway at EB OR 22	A	8.1	-	ODOT	V/C $0.80{ }^{1}$	Yes
10	Cascade Highway at Whitney Street	B	10.9	-	County	LOS E ${ }^{2}$	Yes
11	Cascade Highway/N First Avenue at Shaff Road/Fern Ridge Road	C	26.1	-	County	LOS E ${ }^{2}$	Yes
12	N First Avenue at Regis Street	E	47.6	0.07	City	LOS E ${ }^{3}$	Yes
13	N First Avenue at Hollister Street	C	22.9	0.16	City	LOS E ${ }^{3}$	Yes
14	N First Avenue at Locust Street	C	18.0	0.27	City	LOS E3	Yes
15	N First Avenue at Washington Street	B	19.5	-	County	LOS E2	Yes
16	N First Avenue at Ida Street	C	15.9	-	City	LOS E3	Yes
17	Fern Ridge Road at N Third Avenue	B	14.3	0.19	County	LOS E ${ }^{2}$	Yes
18	N Third Avenue at E Ida Street	A	7.4	-	City	LOS E ${ }^{3}$	Yes
19	Fern Ridge Road at N Tenth Avenue	B	13.3	0.18	County	LOS E2	Yes
20	N Tenth Avenue at E Santiam Street	A	6.5	-	County	LOS E ${ }^{2}$	Yes
21	Fern Ridge Road at OR 22	C	21.0	0.17	ODOT	V/C 0.80	Yes
22	E Santiam Street at OR 22	C	17.2	0.24	ODOT	V/C 0.70	Yes

${ }^{1}$ This v / c ratio may be increased to 0.90 if it can be determined that vehicles queves will not extend onto the mainline or into the portion of the ramp needed to safely accommodate deceleration; and if an adopted Interchange Area Management Plan (IAMP) is present or can be developed.
${ }^{2}$ LOS F may be allowed depending on volume
${ }^{3}$ or LOS F with a v / c ratio of 0.95 or better
Target measures of effectiveness for each agency are described in the Analysis Methodology and Assumptions Memorandum (Reference 1) and summarized in Table 6. As shown, all study intersections operate acceptably within their respective measures of effectiveness in the PM peak hour.

QUEUEING

A queueing analysis was conducted at the signalized study intersections. Table 7 summarizes the 95th percentile queues during the weekday PM peak hours under year 2018 existing traffic conditions. The storage lengths reflect the striped storage for each movement at the intersections. Appendix C contains the queueing reports for these study intersections.

Table 7. Existing Weekday PM Peak Hour Queueing

Intersection	Movement	$95^{\text {th }}$ Percentile Queue (feet)	Storage Length (feet)	Adequate?
Cascade Highway SE/ OR 22 EB Ramps	SBL	25	150	Yes
	EBR	75	575	Yes
Cascade Highway SE/Whitney Street	SBL	50	100	Yes
	WBL	100	150	Yes
Shaff Road/N First Avenue	NBL	125	175	Yes
	SBL	75	100	Yes
	EBL	100	125	Yes
	WBL	75	100	Yes
N First Avenue/E Washington Street	NBL	50	100	Yes
	SBL	100	150	Yes
	EBL	50	75	Yes
	WBL	50	75	Yes
	WBR	25	50	Yes

As shown in Table 7,95th percentile queves do not exceed the striped storage for any turning movement at any study intersection.

PUBLIC OPERATIONS COMMENTS

At their August meeting, the Stayton TSP Public Advisory Committee described locations throughout Stayton that may be experiencing congestion not described in the analysis above. The committee noted the following:

- The intersection of OR 22 and Fern Ridge Road seems to be operating worse than described
- \quad Though the intersection of N Tenth Avenue and E Santiam is operating acceptably now, its operations will degrade with growth.
- \quad The intersection of Cascade Highway/Shaff Road experiences congestion in the AM peak hour
- \quad The intersection of N First avenue/Washington Street operated better with a protected left turn.

TRAFFIC SAFETY

The crash histories of the study intersections and selected segments were reviewed in an effort to identify potential safety issues within the study area. Additionally, all fatal crashes and all pedestrian and bicycle crashes were reviewed to identify safety trends and the ODOT Statewide Priority Index System was reviewed to identify high crash locations within the study area.

INTERSECTION CRASH RATES

ODOT provided crash records for the five-year period from January 1, 2011 through December 31, 2015 for the 22 study intersections. Table 8 summarizes the data provided by ODOT for the study intersection by crash type and severity. Figure 9 illustrates citywide data obtained from ODOT by crash type and severity. Appendix D contains the crash data provided by ODOT.

The crash rates shown in Table 8 were compared to the 90th percentile rates for similar facilities shown in Table 4-1 of the ODOT Analysis Procedures Manual (APM, Reference

Table 8. Intersection Crash Summary (January 1, 2011 to December 31, 2015)

\#	Location	Crash Type							Severity			Total	PM Peak Hour Total Entering Vehicles	Intersection Class ${ }^{2}$	Critical Crash Rate	Crash Rate
		Rear End	Turning	Angle	$\begin{aligned} & \text { Head } \\ & \text { On } \end{aligned}$	Sideswipe	Pedestrian	Fixed Object	PDO ${ }^{1}$	Injury	Fatal					
1	Golf Club Road SE/Sublimity Rd SE	0	2	6	1	1	0	0	6	4	0	10	612	4 ST	0.41	0.90
2	Golf Club Road SE/OR 22 EB Ramps	1	0	0	0	0	0	1	0	2	0	2	933	4 ST	0.41	0.12
3	Golf Club Road SE/Mill Creek Rd SE	2	2	0	0	0	0	0	2	2	0	4	1094	4 ST	0.41	0.20
4	Wilco Rd/Shaff Rd SE	1	0	0	0	0	0	0	0	1	0	1	1292	4 ST	0.41	0.04
5	W Ida St\&Jetters Way-Wilco Road/Stayton Rd SE-W Washington St	0	0	3	0	0	0	0	1	2	0	3	831	4 ST	0.41	0.20
6	N Gardner Ave/Shaff Rd SE	3	1	0	0	0	0	1	3	2	0	5	801	4 ST	0.41	0.34
7	N Gardner Ave/W Washington St	0	0	0	0	0	0	0	0	0	0	0	455	3 ST	0.29	0.00
8	Cascade Hwy SE/OR 22 WB Ramps	0	6	3	0	0	0	0	5	4	0	9	1085	4 ST	0.41	0.45
9	Cascade Hwy SE/OR 22 EB Ramps	23	1	0	0	0	0	0	15	9	0	24	1413	4 SG	0.86	0.93
10	Cascade Hwy SE/Whitney St	0	2	0	0	0	0	0	1	1	0	2	1432	3 SG	0.51	0.08
11	N First Ave/Shaff Rd SE	5	1	7	0	0	1	0	7	7	0	14	1769	4 SG	0.86	0.43
12	N First Ave/W Regis St	2	0	0	0	0	0	0	0	2	0	2	1361	4 ST	0.41	0.08
13	N First Ave/E Hollister St	0	0	1	0	0	0	0	0	1	0	1	1206	4 ST	0.41	0.05
14	N First Ave/W Locust St	2	2	0	0	0	0	0	4	0	0	4	1172	3 ST	0.29	0.19
15	N First Ave/E Washington St	1	8	1	0	0	0	0	4	6	0	10	1328	4 SG	0.86	0.41
16	N First Ave/E Ida St	1	3	2	0	0	1	0	2	5	0	7	1015	4 ST	0.41	0.38
17	N Third Ave/Fern Ridge Rd SE	0	0	4	0	0	0	0	3	1	0	4	611	4 ST	0.41	0.36
18	N Third Ave/E Ida St	0	0	0	0	0	0	0	0	0	0	0	180	4 ST	0.41	0.00
19	N Tenth Ave/Fern Ridge Rd SE	0	1	0	0	0	0	0	0	1	0	1	490	3 ST	0.29	0.11
20	N Tenth Ave/Stayton Rd SE	0	0	0	0	0	0	0	0	0	0	0	346	4 ST	0.41	0.00
21	OR 22/Fern Ridge Rd SE	1	3	8	0	0	0	1	6	7	0	13	1021	4 ST	0.41	0.70
22	OR 22/E Santiam St	0	1	1	0	0	0	0	1	1	0	2	1003	4 ST	0.41	0.11

1. Property Damage Only
2. All Contexts Urban

Reported Crashes from 2011-2015
2). Per the APM, any intersection that has a crash rate equal to or greater than the corresponding 90th percentile rate is considered a high-risk intersection and is recommended for further review. Based on these criteria, four intersections are recommended for further review as described below.

Golf Club Road SE/Sublimity Road SE (Intersection \#1)

The intersection of Golf Club Road SE/Sublimity Road SE is a westbound on and off ramp to OR 22 on the northwest side of the Stayton study area. The crash data summarized in Table 8 shows a high proportion of angle and turning crashes at this intersection. The intersection is stop controlled on the minor approaches, and eight of the ten crashes resulted from a failure to properly yield the right of way by vehicles at a stop sign. Four of the crashes resulted in injuries and none resulted in a fatality.

Cascade Highway SE/OR 22 WB Ramps (Intersection \#8)

The intersection of Cascade Highway SE/OR 22 WB Ramps is a westbound on and off ramp to OR 22 on the north side of the Stayton study area. The crash data summarized in Table 8 shows that all crashes at this intersection in the study period were angle or turning crashes. All the crashes resulted from a failure to properly yield the right of way by vehicles at a stop-controlled approach or failure to stop at a stop sign. Four of the crashes at this intersection resulted in injuries and none resulted in a fatality.

Cascade Highway SE/OR 22 EB Ramps (Intersection \#9)

The intersection of Cascade Highway SE/OR 22 EB Ramps is an eastbound on and off ramp to OR 22 on the north side of the Stayton study area. The crash data summarized in Table 8 shows that 23 of the 24 crashes were rear end crashes. All these crashes involved eastbound vehicles that had just exited OR 22 and 17 of the 23 crashes involved vehicles using the yield-controlled channelized right turn. These 17 rear end crashes likely occurred when the first eastbound vehicle to approach the intersection was required to yield to a southbound vehicle and the second eastbound vehicle to approach the intersection did not anticipate a need to stop. Nine of the crashes at this intersection resulted in injuries and none resulted in a fatality.

OR 22/Fern Ridge Road SE (Intersection \#21)
The intersection of OR 22/Fern Ridge Road SE is an at-grade, minor approach stopcontrolled intersection between a state facility and a county road. The crash data summarized in Table 8 shows that 11 of the 13 crashes involved angle or turning movements. Each of these 11 crashes resulted from a failure to properly yield the right of way by vehicles at a stop-controlled approach. Seven of the crashes at this intersection resulted in injuries and none resulted in a fatality.

SEGMENT CRASH RATES

The crash history of selected segments was reviewed to identify potential safety issues within the study area. City-wide crash data by crash type and severity obtained from ODOT is illustrated in Figure 9. Table 9 summarizes the data provided by ODOT for the study segments by crash type and severity.

Table 9. Segment Crash Summary (January 1, 2011 to December 31, 2015)

\#	Roadway	Roadway Extents	Crash Type						Severity			Total	Functional Classification	Average Rate	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \end{aligned}$
			Rear End	Turning	Angle	Head On	Pedestrian	Fixed Object	PDO ${ }^{1}$	Injury	Fatal				
1	Golf Club Road	OR 22 to Shaff Road	5	0	0	1	0	8	6	8	0	14	Arterial	1.30	0.46
2	Wilco Road	Shaff Road to Deschutes Drive	8	0	0	0	0	1	2	7	0	9	Collector	1.53	0.92
3		Deschutes Drive to W Washington Street	0	0	0	0	0	0	0	0	0	0	Arterial	1.30	0.00
4	Cascade Highway	OR 22 to Shaff Road	6	0	0	0	1	2	3	5	1	8	Principal Arterial	1.45	0.69
5	N First Avenue	Shaff Road to W Ida Street	3	3	1	0	0	1	5	3	0	8	Principal Arterial	1.45	0.41
6		W Ida Street to W Water Street	0	0	0	0	0	0	0	0	0	0	Principal Arterial	1.45	0.00
7	S First Avenue	W Water Street to southern UGB limits	0	0	0	0	0	4	4	0	0	4	Arterial	1.30	0.94

The crash rates shown in Table 9 were compared to the average rates for similar segments shown in ODOT Crash Rate Table II (Reference 3). Per the APM, any segment that has a crash rate equal to or greater than the corresponding average rate is considered a highrisk segment and is recommended for further review. Based on these criteria, no segments have a crash rate equal to or greater than the corresponding average rate and thus no segments are recommended for further review.

SAFETY PRIORITY INDEX SYSTEM

The ODOT Statewide Priority Index System (SPIS) identifies sites along both state highways and non-state facilities where safety issues warrant further investigation. The SPIS is a method developed by ODOT for identifying hazardous locations on state highways through consideration of crash frequency, crash rate, and crash severity. Sites identified within the top 5 percent are investigated by ODOT staff and reported to the Federal Highway Administration (FHWA). Per the most recent SPIS list, published in 2016, a segment immediately north of Cascade Highway SE/Whitney Street is identified by ODOT as within the top 10% of statewide SPIS sites over the last five-year period. Note that the ODOT SPIS shows that a fatal pedestrian crash occurred just north of the Cascade Highway SE/Whitney Street intersection and was not intersection-related.

PEDESTRIAN AND BICYCLE CRASH REVIEW
Seven pedestrian crashes and six bicycle crashes occurred within the study area from 2011 to 2015:

Pedestrian Crashes:

Shaff Road/Quail Run Avenue
At 10:00 AM on November 21, 2015, a passenger vehicle exiting a commercial driveway from the south onto Shaff Road SE struck a pedestrian in the intersection. The driver of the vehicle failed to yield the right of way to the pedestrian. The pedestrian sustained a minor injury (not visible but leading to a complaint of pain) from the crash.

Fern Ridge Road/N First Avenue
At 7:00 AM on January 20, 2012, a passenger vehicle traveling west on Fern Ridge Road and attempting to turn south onto N First Avenue struck a pedestrian in the intersection. The driver of the vehicle failed to yield the right of way to the pedestrian. The pedestrian sustained a minor injury (not visible but leading to a complaint of pain) from the crash.

W Locust Street/Heritage Loop
At 6:00 AM on December 19, 2015, a passenger vehicle traveling east on W Locust Road and attempting to turn north onto Heritage Loop struck a pedestrian 50 feet north of the intersection. The driver failed to see or yield to the pedestrian, who was wearing dark clothing. The pedestrian sustained an incapacitating injury from the crash.

W Washington Street East of N Gardner Avenue
At 2:00 PM on June 15, 2012, a passenger vehicle traveling west on W Locust Road struck two pedestrians off the roadway. The driver was driving inattentively and lost control of the vehicle, causing it to run off the roadway and hit the pedestrians. One pedestrian sustained an incapacitating injury from the crash and the other sustained a minor injury (not visible but leading to a complaint of pain) from the crash.

Cascade Highway SE, South of Golf Lane SE Intersection
At 5:00 PM on December 10, 2014, a southbound passenger vehicle struck and killed a pedestrian on Cascade Highway SE. Conditions at the time of the crash were dark with heavy rain and the pedestrian attempted to cross at a location without a crosswalk.

N First Avenue/W High Street
At 2:00 PM on December 10, 2015, a passenger vehicle traveling south on N First Avenue struck a pedestrian in the intersection. The driver failed to yield the right of way to the pedestrian. The pedestrian sustained a minor injury (not visible but leading to a complaint of pain) injury from the crash.

N First Avenue/W Ida Street
At 7:00 PM on March 11, 2014, a passenger vehicle traveling north on N First Avenue and attempting to turn west onto Ida Street struck a pedestrian in the intersection. The driver failed to yield the right of way to the pedestrian. The pedestrian sustained a nonincapacitating injury from the crash.

Bicycle Crashes:

Shaff Road East of Golf Club Road
At 4:00 PM on March 1, 2011, a passenger vehicle exiting a commercial driveway from the south onto Shaff Road SE struck a bicyclist in the bicycle lane or sidewalk. The driver of the vehicle failed to yield the right of way to the bicyclist. The bicyclist sustained a nonincapacitating injury from the crash.

Shaff Road/Quail Run Avenue
At 7:00 AM on August 8, 2015, a passenger vehicle attempting to make an eastbound left turn at the intersection of Shaff Road SE/Quail Run Avenue failed to yield the right of way and struck a westbound bicyclist. The bicyclist sustained a non-incapacitating injury from the crash.

Shaff Road/Kindle Way
At 7:00 AM on May 1, 2015, a passenger vehicle attempting to make a southbound left turn at the intersection of Shaff Road SE/Kindle Way SE failed to yield the right of way to a westbound bicyclist. As a result, the bicyclist struck the vehicle and sustained a minor injury (not visible but leading to a complaint of pain) injury.

W Water Street East of S Douglas Avenue
At 7:00 PM on June 1, 2012, a passenger vehicle proceeding from west to east failed to yield the right of way and struck a bicyclist. Conditions were rainy and wet and the bicyclist sustained a non-incapacitating injury.

N First Avenue/E Fir Street
At 2:00 PM on August 21, 2014, a passenger vehicle proceeding from north to south failed to yield the right of way and struck a bicyclist. The driver's view was obscured by her vehicle. The bicyclist did not sustain an injury.

Fern Ridge Road/Wildflower Drive
At 3:00 PM on February 20, 2013, a southbound passenger vehicle at the intersection of Fern Ridge Road/Wildflower Drive failed to yield the right of way to a westbound bicyclist. The bicyclist sustained a non-incapacitating injury.

FATAL CRASH REVIEW

Two fatal crashes occurred within the study area from 2011 to 2015.
OR 22, West of E Santiam Street Intersection
At 1:00 PM on November 11, 2011, a westbound passenger vehicle on OR 22 crossed over the center line and into the oncoming traffic line, hitting an eastbound passenger vehicle head on. The driver of the former vehicle was killed in the crash. Per police, the driver may have suffered a medical emergency before the crash occurred, causing the illegal maneuver.

Cascade Highway SE, South of Golf Lane SE Intersection

At 5:00 PM on December 10, 2014, a southbound passenger vehicle struck and killed a pedestrian on Cascade Highway SE. Conditions at the time of the crash were dark with heavy rain and the pedestrian attempted to cross at a location without a crosswalk. This crash was also described in the pedestrian and bicycle crash review.

Cascade Highway SE at Whitney Street

ODOT has verified all crashes occurring through 2015; however, more recent crash data is available in preliminary form. Crash data from 2017 shows that a fatal crash occurred at the intersection of Cascade Highway SE and Whitney Street at 9:00 AM on September 7, 2017. In this crash, a westbound left-turning vehicle and a northbound through-moving vehicle collided, resulting in one fatality, one incapacitating injury, and one minor (not visible but leading to a complaint of pain) injury. This crash was the result of the northbound driver disregarding the traffic signal.

PUBLIC TRAFFIC SAFETY COMMENTS

At their August meeting, the Stayton TSP Public Advisory Committee described locations throughout Stayton that have experienced close calls or that have the potential to be improved from a safety perspective. These locations were:

- \quad School crosswalks across N First Avenue
- \quad First Avenue/Washington Street intersection
- $\quad \mathrm{N}$ Tenth Avenue/E Santiam Street intersection
- \quad N Third Avenue/Fern Ridge Road intersection

ENVIRONMENTAL JUSTICE ANALYSIS

The socio-economically sensitive populations within the City of Stayton consist of minorities, elderly people (people 65 years of age or older), youth (people 17 years of age or younger), people who do not speak English, disabled people, and people who live below the poverty line. 2010 census data was collected at the census block group level to show the concentrations of these populations as a percentage of the overall population. The data was combined with a general understanding of local conditions to ensure that the existing transportation system meets the needs of these individuals. Figures 10 through 16 illustrate the locations of these populations within Stayton.

- Minorities - As shown in Figure 10, the south and west sides of the city contain the highest concentration of minorities. The block group southwest of W Washington Street has a 10-11\% concentration of non-white population while the block group on the west side between Shaff Road and W Washington Street has a 12$18 \%$ concentration of non-white population. The remaining portions of the city all have a less than 10% concentration of non-white population.
- Elderly People - As shown in Figure 11, the part of the city north of Shaff Road/Fern Ridge Road and the central part of the city have the highest concentration of people age 65 and older at 17%. Other parts of the city have an elderly population mostly under 12%.
- Youth - As shown in Figure 12, the west side of the city has the highest youth population at $28-29 \%$ of the population. The east side of the city has a similarly high youth population at $26-27 \%$ of the population. The northern and central parts of the city have lower youth populations at under 25% of the population.
- Non-English Speaking - As shown in Figure 13, the west side of the city has the highest population of people who do not speak English at 17-26\% of the population. The east side of the city has a similarly high population of people who do not speak English at 16\%. In the northern part of the city, $6-15 \%$ of the population does not speak English and less than 4% of people do not speak English in the central and southern part of the city. In total, about 15\% of Stayton residents do not speak English.
- People with Disabilities - As shown in Figure 14, the north side of the city has the highest population of people with disabilities with $29 \%-32 \%$ of the population. The east and west sides of the city have a low population of people with disabilities at less than 18% while the central part of the city has $26-27 \%$ of the population with disabilities.

\& ASSOCIATES

$\wedge^{\mathrm{N}} \begin{array}{ccc}0 & 0.5 & 1 \text { Miles } \\ & 1\end{array}$
Disabled Population Stayton, Oregon
Figure 14
- Households without Access to a Personal Vehicle - As shown in Figure 15, the north and west sides of the city have the highest portion of households without access to a personal vehicle, at 14-17\%. Overall, 9% of the households in Stayton do not have access to a personal vehicle. These households are more likely to rely on walking, bicycling, and public transportation for their transportation needs.
- People with Low income - As shown in Figure 16, the southwest corner of the city has the highest percentage of people earning less than twice the federal poverty level at $50-88 \%$ of the population. The west side of the city has $37-49 \%$ of people in this category, while the north and east side of the city has $28-36 \%$ of people in this category.

The socioeconomic conditions within the city will be considered in the development of the TSP update to ensure that the future transportation system meets the needs of the entire population while not creating adverse conditions for select segments of the population.

FUTURE GROWTH ASSUMPTIONS

Analysis below shows projected 2040 operations at the 22 study intersections. To determine 2040 traffic conditions, traffic growth between present day and 2040 was projected through an understanding of expected household and employment growth in the area and accompanying trip generation.

PROJECTED LAND USES
Land use plays an important role in developing a comprehensive transportation system. The amount of land that is planned to be developed, the type of land uses, and how the land uses are mixed together all have a direct impact on how the transportation system will operate in the future. Understanding land use is critical to taking actions to maintain or enhance the transportation system. Population and employment growth play a significant role in determining future land use. The following provides a summary of the population and employment projections prepared for the Stayton TSP update. Appendix E contains a more detailed discussion on the projections.

POPULATION AND HOUSEHOLD FORECAST

Population data for Stayton was obtained from Portland State University's Population Research Center (PRC). The PRC's Coordinated Population Forecast for Marion County and Larger Sub Areas includes base year 2017 and forecast year 2035 and 2067 population estimates for Stayton as well as estimates of persons per household. Based on the data, the population is currently 8,138 persons and is projected to be 9,767 persons in the year 2040; this reflects an Average Annual Growth Rate (AAGR) of approximately 0.80 percent per year between 2017 and 2035 and an AAGR of approximately 0.70 percent per year between 2035 and 2040. The persons per household is currently 2.6 and is

Low Income Population
Stayton, Oregon
Figure 16
\& ASSOCIATES
projected to be 2.6 in 2040. Therefore, there is a need for approximately 627 new homes in 2040. However, if the occupancy rate remains at 95 percent, there may be a need for 31 additional homes, or 658 new homes.

EMPLOYMENT FORECAST

Employment data for Stayton was obtained through the US Census Bureau's Center for Economic Studies "On the Map" tool and the State of Oregon's Mid-Valley Industry Employment Projections for the Linn, Marion, Polk, and Yamhill County. While the "On the Map" data shows a steady decline in jobs within the City since 2005, the State projects a 12 percent growth rate within the County, or an average annual growth rate of 1.2 percent. The State's projected growth rates vary considerably between job sectors, with the greatest growth occurring in manufacturing and health care jobs. Based on the data, there are currently 3,060 jobs within Stayton and there are projected to be 4,135 jobs in 2040, or an increase of 1,075 jobs. The job data was further divided into North American Industry Classification System (NAICS) sectors and converted to square-feet. Based on the data there is currently 282,410 square-feet of commercial and 622,159 square-feet of industrial space within the City and there is projected to be 380,802 square-feet of commercial and 829,986 square-feet of industrial space in the future

Table 10 summarizes the population and employment data for year 2017 and forecast year 2040 conditions. As shown, employment is expected to grow at a slightly higher rate than the population over the 23-year period.

Note that this growth estimate is more conservative than the growth estimate shown in the 2004 TSP. The 2004 TSP anticipated rapid growth that did not occur; the growth estimate shown below anticipates more conservative growth that will lead to lower projected volumes than shown in the 2004 TSP.

Table 10: Stayton Population and Employment Growth Summary

Land Use	2017	2040	Change	Annual Percent Change
Population	8,138	9,767	1,629	$0.80 \% / 0.70 \%$
Households	3,130	3,757	627	$0.80 \% / 0.70 \%$
Employment	3,060	4,135	1,075	1.2%
Square-feet (Com/Ind)	$282 \mathrm{~K} / 622 \mathrm{~K}$	$381 \mathrm{~K} / 830 \mathrm{~K}$	$98 \mathrm{~K} / 207 \mathrm{~K}$	

The population and employment data shown in Table 10 was distributed throughout the Stayton based on information provided by the City on planned developments, information provided by the US Census, and information provided in the City's comprehensive plan and zoning designation map. The population and employment data was distributed based on Transportation Analysis Zones (TAZs) developed for the TSP update based on the current zoning designations and the location of major roadways and intersections throughout the City. The TAZs provide a convenient way of evaluating and summarizing the population and employment data for the City as well as a way to establish origin and destinations for new trips. Trip generation based on expected growth and origindestination tables showing the distribution of this trip generation to and from the TAZs is
shown in Appendix F. Figure 17 shows the distribution of this trip generation onto the transportation network.

FUTURE CONDITIONS ANALYSIS

TRAFFIC OPERATIONS

Year 2040 traffic conditions were determined by applying the future growth assumptions outlined above to the existing traffic conditions. Lane configurations and traffic control devices were assumed to be identical to existing conditions. Figure 18 summarizes the PM peak hour turning movement counts and operations at the study intersections under 2040 traffic conditions. Table 11 summarizes the results of the traffic operations analysis at the study intersection under existing traffic conditions. Appendix G contains the year 2040 traffic conditions worksheets.

Table 11. 2040 Weekday PM Peak Hour Intersection Operations

\#	Intersection	Level of Service (LOS)	$\begin{aligned} & \text { Delay } \\ & \text { (Sec) } \end{aligned}$	Volume/Capacity (v / c)	Measure of Effectiveness (MOE)		MOE Met?
					Agency	Maximum	
1	Golf Club Road at Sublimity Road/WB OR 22	C	16.0	0.15	ODOT	V/C 0.70^{1}	Yes
2	Golf Club Road at EB OR 22	B	13.2	0.27	ODOT	V/C $0.80{ }^{1}$	Yes
3	Golf Club Road at Mill Creek Road	D	31.8	0.20	County	LOS E ${ }^{2}$	Yes
4	Golf Club Road/Wilco Road at Shaff Road	D	25.3	-	County	LOS E2	Yes
5	Wilco Road at W Washington Street/Ida Street	B	13.6	-	County	LOS E ${ }^{2}$	Yes
6	Shaff Road at Gardner Road/Stayton Middle School	D	26.3	0.42	County	LOS E2	Yes
7	W Washington Street at Gardner Road	B	12.9	0.15	City	LOS E ${ }^{3}$	Yes
8	Cascade Highway at Sublimity Boulevard/WB OR 22	C	20.6	0.08	ODOT	V/C 0.70 ${ }^{1}$	Yes
9	Cascade Highway at EB OR 22	A	8.2	-	ODOT	V/C 0.80^{1}	Yes
10	Cascade Highway at Whitney Street	B	11.0	-	County	LOS E ${ }^{2}$	Yes
11	Cascade Highway/N First Avenue at Shaff Road/Fern Ridge Road	C	34.6	-	County	LOS E ${ }^{2}$	Yes
12	N First Avenue at Regis Street	F	52.7	0.08	City	LOS E ${ }^{3}$	Yes
13	N First Avenue at Hollister Street	C	24.4	0.17	City	LOS E ${ }^{3}$	Yes
14	N First Avenue at Locust Street	C	18.9	0.30	City	LOSE ${ }^{3}$	Yes
15	N First Avenue at Washington Street	C	20.1	-	County	LOS E ${ }^{2}$	Yes
16	N First Avenue at Ida Street	C	18.2	-	City	LOS E ${ }^{3}$	Yes
17	Fern Ridge Road at N Third Avenue	C	23.5	0.35	County	LOS E ${ }^{2}$	Yes
18	N Third Avenue at E Ida Street	A	7.4	-	City	LOS E ${ }^{3}$	Yes
19	Fern Ridge Road at N Tenth Avenue	D	31.9	0.52	County	LOS E ${ }^{2}$	Yes
20	N Tenth Avenue at E Santiam Street	A	8.9	-	County	LOS E ${ }^{2}$	Yes
21	Fern Ridge Road at OR 22	D	26.6	0.22	ODOT	V/C 0.80	Yes
22	E Santiam Street at OR 22	E	36.9	0.57	ODOT	V/C 0.70	Yes

${ }^{1}$ This v/c ratio may be increased to 0.90 if it can be determined that vehicles queues will not extend onto the mainline or into the portion of the ramp needed to safely accommodate deceleration; and if an adopted Interchange Area Management Plan (IAMP) is present or can be developed.
${ }^{2}$ LOS F may be allowed depending on volume
${ }^{3}$ or LOS F with a v/c ratio of 0.95 or better
Target measures of effectiveness for each agency are described in the Analysis Methodology and Assumptions Memorandum (Reference 1) and summarized in Table 11. As shown, all study intersections operate acceptably within their respective measures of effectiveness in the PM peak hour. Note that while the intersection of N First Avenue at

ASSOCIATES

Regis Street operates at LOS F, the v/c ratio of the critical movement is better than 0.95. Therefore, this intersection meets City of Stayton mobility standards.

QUEUEING

A queveing analysis was conducted at the signalized study intersections. Table 12 summarizes the 95th percentile queues during the weekday PM peak hours under year 2040 traffic conditions. The storage lengths reflect the striped storage for each movement at the intersections. Appendix H contains the queveing reports for these study intersections.

Table 12. Future Weekday PM Peak Hour Queueing

Intersection	Movement	95* Percentile Queue	Storage Length (feet)	Adequate?
Cascade Highway SE/ OR 22 EB Ramps	SBL	25	150	Yes
	EBR	75	575	Yes
Cascade Highway SE/Whitney Street	SBL	50	100	Yes
	WBL	100	150	Yes
Shaff Road/N First Avenue	NBL	125	175	Yes
	SBL	100	100	Yes
	EBL	100	125	Yes
	WBL	100	100	Yes
N First Avenue/E Washington Street	NBL	50	100	Yes
	SBL	100	150	Yes
	EBL	50	75	Yes
	WBL	50	75	Yes
	WBR	25	50	Yes

As shown in Table 12, 95th percentile queues do not exceed the striped storage for any turning movement at any study intersection.

GOLF LANE REALIGNMENT

Note that per the Whitney Street/Cascade Highway operational analysis study (Reference 4), Golf Lane should be realigned to intersect Cascade Highway directly opposite Whitney Street. See the May 19, 2003 Memorandum of Understanding between Marion County and the City of Stayton for further details regarding this area.

TRANSPORTATION FUNDING

The following provides an overview of the City of Stayton's transportation funding and provides a forecast of potential funds for implementing the TSP based on existing funding sources. Additional funding sources could provide additional funding in the future.

EXISTING REVENUE SOURCES

The primary revenue sources contributing to transportation funding for Stayton are the state gas tax, ODOTs surface transportation program (STP), and the City's street maintenance fee, System Development Charges (SDCs), and most recently, a local gas
tax. Exhibit 1 illustrates the revenues from these sources over the past six years as well as projected for Fiscal Year (FY) 2018-19.

Exhibit 1: City of Stayton Transportation Revenue Sources

Table 13. City of Stayton Transportation Revenue

	FY 12-13	FY 13-14	FY 14-15	FY 15-16	FY 16-17	FY 17-18	FY 18-19
State Gas Tax	\$410,000	\$425,000	\$435,000	\$430,000	\$450,000	\$490,000	\$556,800
Local Gas Tax						\$149,000	\$215,000
STP Allocation/ ODOT Grants	\$451,119	\$56,269	\$81,876	\$81,876	\$85,000	\$80,000	\$88,100
Transfer from Vehicle Replacement Fund						\$140,100	\$95,700
Transfer In Street SDC Fund						\$135,000	\$219,000
Street Maintenance Fee	\$84,000	\$84,000	\$84,000	\$84,000	\$87,000	\$90,300	\$87,900
Sidewalk Maintenance Reimbursement		\$60,000	\$40,000	\$40,000			
Miscellaneous	\$500	\$10,450	\$11,150	\$11,150	\$1,900	\$6,000	\$17,500
Total	\$945,619	\$635,719	\$652,026	\$647,026	\$623,900	\$1,090,400	\$1,280,000

As shown in Exhibit 1 and Table 13, transportation funding has increased in the last two fiscal years in due to the local gas tax as well as SDCs. The following describes the most significant funding sources and their projections for the future.

STATE GAS TAX

State gas taxes are comprised of proceeds from excise taxes imposed by the state and federal government to generate revenue for transportation funding. The proceeds from these taxes are distributed to Oregon counties and cities in accordance with Oregon Revised Statute (ORS) 366.764, by county registered vehicle number, and ORS 366.805, by city population. The Oregon Constitution states that revenue from the state gas tax is to be used for the construction, reconstruction, improvement, maintenance, operation and use of public highways, roads, streets, and roadside rest areas.

Based on data provided by the City, total revenue from the state gas tax has increased over the last two years due to adjustments in the population estimate used by the state to determine the amount of funding to distribute to the City. The population is expected to increase by approximately 1.0 percent per year over the next several years (see Appendix E for the population and employment assumptions), therefore revenue from the state gas tax is estimated to increase by 1% each year.

LOCAL GAS TAX
In 2017, Stayton voters passed a $\$ 0.03$ per gallon gas tax for the construction, reconstruction, improvement, repair, and maintenance of streets within the city. The tax was estimated to raise approximately $\$ 162,000$ per year but is projected to generate $\$ 215,000$ in Fiscal Year 2018-19. This funding source is estimated to increase by 1% each year based on local growth and growth of traffic on Highway 22.

SURFACE TRANSPORTATION PROGRAM (STP) ALLOCATION

The surface transportation program (STP) provides flexible funding that may be used by States and local municipalities for projects to preserve and improve the transportation system by reconstructing any Federal-aid highway, bridge, and/or tunnel projects on public roads, pedestrian and bicycle infrastructure, and transit capital projects, including bus terminals.

ODOT distributes STP funds to municipalities based on population. The funds may be distributed on an annual basis or may be saved up and distributed all at once for larger projects. Based on data provided by the City, STP funds have averaged approximately \$85,000 per year over the past several years. Stayton also received a larger grant in FY 2012-13 for the Tenth Avenue project. The projections provided below assume annual STP funds of $\$ 85,000$ per year plus $\$ 500,000$ every five years for special grant funded projects.

SYSTEM DEVELOPMENT CHARGES

System Development Charges (SDCs) are fees assessed on developments for impacts to public infrastructure. All revenue is dedicated to transportation capital improvement projects designed to accommodate growth. The City can offer SDC credits to developers that provide public improvements beyond the required street frontage, including those that can be constructed by the private sector at a lower cost. For example, SDC credits might be given for providing off-site improvements, such as sidewalks and bike lanes that connect the site to nearby schools or other amenities.

Based on data provided by the City, revenue from SDCs have begun again after a period of little development. Based on the growth assumptions of an additional 646 households (597 single-family and 49 multi-family homes) and 1,074 jobs (resulting in approximately an additional 100,000 s.f. of commercial space and 200,000 s.f. of industrial space), it is assumed the City may average approximately $\$ 84,000$ per year in SDCs from residential development and \$54,000 per year from commercial and industrial development for a total future SDC assumption of \$138,000 per year.

STREET MAINTENANCE FEE

The City of Stayton Transportation Maintenance Fee began in February 2011 and included on monthly utility bills. The fee is listed as a "Street Fee" and the funds from this fee must be used for street repair and maintenance. As the number of households in Stayton is anticipated to increase 1% per year over the TSP planning horizon, it is assumed that the Street Maintenance Fee will increase by 1% per year as well.

PROJECTED REVENUES

Overall transportation funding has increased over the last five years and is assumed to continue to increase over the TSP planning horizon. Table 14 provides an estimate of potential transportation funding over the TSP horizon based on the existing revenue sources and the growth assumptions described above. As shown, approximately $\$ 28$ million dollars are anticipated to be available for transportation over the next 21 years. However, only a portion is assumed to be available for street improvements and capital projects (as opposed to pavement preservation alone). The following section describes what portions of that may be available for enhancements to the transportation system.

Table 14. Projected Transportation Funding

	FY $19-20$	5 -Year	10 -Year	2040
State Gas Tax	$\$ 562,368$	$\$ 2,867,520$	$\$ 5,904,307$	$\$ 13,080,123$
Local Gas Tax	$\$ 217,150$	$\$ 1,107,250$	$\$ 2,279,860$	$\$ 5,050,694$
STP Allocation ODOT Grants	$\$ 85,000$	$\$ 925,000$	$\$ 1,850,000$	$\$ 3,785,000$
Transfer from Vehicle Replacement Fund	$\$ 33,686$	$\$ 168,429$	$\$ 336,857$	$\$ 707,400$

	FY 19-20	5-Year	10-Year	2040
Transfer In Street SDC Fund	\$ 138,000	\$ 690,000	\$ 1,380,000	\$ 2,898,000
Street Maintenance Fee	\$ 88,779	\$ 452,685	\$ 932,092	\$ 2,064,912
Sidewalk Maintenance Reimbursement	\$ 20,000	\$ 100,000	\$ 200,000	\$ 420,000
Miscellaneous	\$ 8,379	\$ 41,893	\$ 83,786	\$ 175,950
Total	\$ 1,153,362	\$ 6,352,777	\$ 12,966,902	\$ 28,182,079

TRANSPORTATION EXPENDITURES

The City's transportation expenditures are summarized by five main categories including personnel services, materials and services, capital improvements, fund transfers, and contingencies. Exhibit 2 illustrates the City's transportation expenditures over the past six fiscal years and projected for FY 2018-19.

Exhibit 2: City of Stayton Transportation Expenditures

As shown in Exhibit 2, transportation spending has increased steadily over the last five years with the exception of FY 2016-17. Table 15 shows the portions of the transportation expenditures that have been spent on street improvements and capital projects. Overtime these have averaged approximately 44% of the transportation budget over seven years including the projected FY 2018-19.

Table 15. City of Stayton Transportation Expenditures

	FY 12-13	FY 13-14	FY 14-15	FY 15-16	FY 16-17	FY 17-18	FY 18-19
Personnel Service	\$ 86,275	\$84,096	\$ 84,470	\$ 85,460	\$ 88,600	\$95,600	\$ 189,600
Materials and Services	\$ 196,030	\$ 262,030	\$ 232,780	\$ 232,780	\$ 201,900	\$ 206,300	\$ 228,000
Street Improvements	\$ 100,000	\$ 180,000	\$ 350,000	\$ 425,000	\$ 300,000	\$ 399,000	\$ 625,000
Transportation System Plan Update						\$ 135,000	\$ 100,000
Miscellaneous		\$ 10,000	\$ 10,000	\$ 10,000			
Transfer to Capital Projects (Tenth Ave Fund)	\$ 476,500						
Transfer to General Fund	\$ 13,900	\$ 14,180	\$ 14,180	\$ 14,605	\$ 50,000	\$ 53,500	\$ 65,000
Transfer to PW Admin Fund	\$ 65,000	\$ 65,000	\$ 65,000	\$ 66,950	\$ 76,400	\$ 78,200	\$ 80,000
Transfer to Facility Maintenance	\$ 4,922	\$ 4,922	\$ 4,922	\$ 4,922	\$ 4,700	\$ 2,500	\$ 2,500
Transfer to Vehicle Replacement Fund	\$ 34,835	\$ 38,835	\$ 38,835	\$ 38,835			
Miscellaneous				\$ 75,000			
Total Transportation Expenditures	\$ 977,462	\$ 659,063	\$ 800,187	\$ 878,552	\$ 721,600	\$ 970,100	\$ 1,290,100
Total Spent on Street Improvements and Capital Projects	\$ 576,500	\$ 180,000	\$ 350,000	\$ 425,000	\$ 300,000	\$ 399,000	\$ 625,000
\% Spent on Street Improvements and Capital Projects	59\%	27\%	44\%	48\%	42\%	41\%	48\%

PROJECTED FUNDING FOR STREET IMPROVEMENTS AND CAPITAL PROJECTS

As described above, approximately $\$ 28$ million dollars are anticipated to be available for transportation over the next 21 years. However, only a portion is assumed to be available for street improvements and capital projects (as opposed to street maintenance such as pavement preservation). STP Allocation, ODOT grants, and SDC funds are assumed to be used for street improvements and capital projects in the future along with a portion of state and local gas tax based on past transportation spending which averaged approximately 42% of gas taxes supporting street improvements (as opposed to street maintenance).

Table 16 illustrates the projected revenues for street improvements and capital projects over the next 1,5,10 and 21-year periods. Three scenarios are provided that vary in the assumed portion of gas taxes that could go towards these projects from the historical rate of $42 \%, 20 \%$ and 0%. As shown, depending upon street maintenance needs, between $\$ 6.68$ and $\$ 14.4$ million could be available for street improvements and capital projects over the next 21 years.

Table 16. Potential Funding for Street Improvements and Capital Projects

	FY 19-20	5-Year	$10-\mathrm{Year}$	2040
State Gas Tax	$\$ 562,368$	$\$ 2,867,520$	$\$ 5,904,307$	$\$ 13,080,123$
Local Gas Tax	$\$ 217,150$	$\$ 1,107,250$	$\$ 2,279,860$	$\$ 5,050,694$
STP Allocation/ ODOT Grants	$\$ 85,000$	$\$ 925,000$	$\$ 1,850,000$	$\$ 3,785,000$
Transfer In Street SDC Fund	$\$ 138,000$	$\$ 690,000$	$\$ 1,380,000$	$\$ 2,898,000$
Estimated Revenues for Street Improvements and Capital Projects (42\% of gas tax)	$\$ 550,398$	$\$ 3,284,403$	$\$ 6,667,350$	$\$ 14,297,943$
Estimated Revenues for Street Improvements and Capital Projects (20\% of gas tax)	$\$ \mathbf{3 7 8 , 9 0 4}$	$\$ 2,409,954$	$\$ 4,866,833$	$\$ 10,309,163$
Estimated Revenues for Street Improvements and Capital Projects (0\% of gas tax)	$\$ 223,000$	$\$ 1,615,000$	$\$ 3,230,000$	$\$ 6,683,000$

REFERENCES

1. Analysis Methodology and Assumptions Memorandum. May 2018. Kittelson \& Associates, Inc.
2. Analysis Procedures Manual Version 1. July 2018. Oregon Department of Transportation.
3. Five-Year Comparison of State Highway Crash Rates. 2015. Oregon Department of Transportation.
4. Whitney Street/Cascade Highway Operational Analysis. August 2001. Kittelson \& Associates, Inc.

APPENDICES

A. Turning Movement Counts
B. Existing PM Operations
C. Existing PM Queueing
D. Crash History
E. Population and Employment Forecast
F. Trip Generation and Origin-Destination Tables
G. 2040 PM Operations
H. 2040 PM Queveing

Appendix A Turning Movement Counts

Location: Wilco Rd/Jetters Way \& Stayton Rd SE
Date: 4/17/2018

Peak Hour: 5:00 PM - 6:00 PM
Peak 15: 5:20 PM - $5: 35$ PM
Peak 15:
PHF:
$5: 20$ PM
0

Appendix B Existing PM Operations

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }_{1}$	$\hat{1}$		${ }^{7}$	$\hat{\beta}$		\%	$\hat{\beta}$	
Traffic Vol, veh/h	11	66	37	42	43	151	45	256	66	235	328	12
Future Vol, veh/h	11	66	37	42	43	151	45	256	66	235	328	12
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	0	3	0	7	0	3	0	5	2	1	3	17
Mumt Flow	12	74	42	47	48	170	51	288	74	264	369	13
Number of Lanes	0	1	0	1	1	0	1	1	0	1	1	

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	1	2	2
Conflicting Approach Left	SB	NB	WB	
Conflicting Lanes Left	2	2	1	2
Conflicting Approach Right	NB	SB	WB	
Conflicting Lanes Right	2	2	2	1
HCM Control Delay	14.4	15.1	23.8	22.7
HCM LOS	B	C	C	C

Lane	NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	10%	100%	0%	100%	0%
Vol Thru, \%	0%	80%	58%	0%	22%	0%	96%
Vol Right, \%	0%	20%	32%	0%	78%	0%	4%
Sign Control	Stop						
Traffic Vol by Lane	45	322	114	42	194	235	340
LT Vol	45	0	11	42	0	235	0
Through Vol	0	256	66	0	43	0	328
RT Vol	0	66	37	0	151	0	12
Lane Flow Rate	51	362	128	47	218	264	382
Geometry Grp	7	7	6	7	7	7	7
Degree of Util (X)	0.107	0.711	0.287	0.111	0.44	0.538	0.726
Departure Headway (Hd)	7.649	7.076	8.063	8.469	7.272	7.341	6.839
Convergence, Y/N	Yes						
Cap	468	5510	444	423	495	491	527
Service Time	5.4	4.827	6.128	6.221	5.024	5.09	4.588
HCM Lane V/C Ratio	0.109	0.71	0.288	0.111	0.44	0.538	0.725
HCM Control Delay	11.3	25.5	14.4	12.3	15.7	18.4	25.7
HCM Lane LOS	B	D	B	B	C	C	D
HCM 95th-tile Q	0.4	5.6	1.2	0.4	2.2	3.1	6

Intersection
Intersection Delay, s/veh 12
Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\boldsymbol{\$}$			$\boldsymbol{\$}$			$\boldsymbol{\uparrow}$	$\mathbf{~}$		$\boldsymbol{\uparrow}$	$\mathbf{7}$
Traffic Vol, ven/h	73	67	39	2	85	75	25	113	5	63	227	57
Future Vol, veh/h	73	67	39	2	85	75	25	113	5	63	227	57
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	18	10	13	0	6	8	8	9	0	3	2	9
Mvmt Flow	76	70	41	2	89	78	26	118	5	66	236	59
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	2	WB
Conflicting Approach Left	SB	NB	EB	1
Conflicting Lanes Left	2	2	1	EB
Conflicting Approach RighNB	SB	WB	1	
Conflicting Lanes Right	2	2	1	13.4
HCM Control Delay	11.5	10.3	11	B

Intersection						
Int Delay, s/veh 3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{1}$	4	4	「	${ }^{7}$	F
Traffic Vol, veh/h	40	128	145	43	52	47
Future Vol, veh/h	40	128	145	43	52	47
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	70	-	-	110	0	50
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	0	2	1	0	0	2
Mvmt Flow	49	156	177	52	63	57

HCM 6th Signalized Intersection Summary
109: Cascade Hwy SE \& OR 22 EB Ramps

	4	\rightarrow	\checkmark	\checkmark			4	4	\%		1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	T					\uparrow		${ }^{7}$	4	
Traffic Volume (veh/h)	53	1	381	0	0	0	0	532	58	48	340	0
Future Volume (veh/h)	53	1	381	0	0	0	0	532	58	48	340	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.98	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1723	1750	1723				0	1709	1709	1641	1723	0
Adj Flow Rate, veh/h	55	1	0				0	554	60	50	354	0
Peak Hour Factor	0.96	0.96	0.96				0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	2	0	2				0	3	3	8	2	0
Cap, veh/h	113	2					0	762	83	431	1170	0
Arrive On Green	0.07	0.07	0.00				0.00	0.50	0.50	0.06	0.68	0.00
Sat Flow, veh/h	1638	30	1460				0	1512	164	1563	1723	0
Grp Volume(v), veh/h	56	0	0				0	0	614	50	354	0
Grp Sat Flow(s),veh/h/ln	1668	0	1460				0	0	1675	1563	1723	0
Q Serve(g_s), s	1.3	0.0	0.0				0.0	0.0	11.6	0.5	3.4	0.0
Cycle Q Clear(g_c), s	1.3	0.0	0.0				0.0	0.0	11.6	0.5	3.4	0.0
Prop In Lane	0.98		1.00				0.00		0.10	1.00		0.00
Lane Grp Cap(c), veh/h	116	0					0	0	844	431	1170	0
V/C Ratio(X)	0.48	0.00					0.00	0.00	0.73	0.12	0.30	0.00
Avail Cap(c_a), veh/h	1236	0					0	0	1448	1103	1489	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	18.2	0.0	0.0				0.0	0.0	7.9	5.5	2.6	0.0
Incr Delay (d2), s/veh	2.3	0.0	0.0				0.0	0.0	2.3	0.1	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.4	0.0	0.0				0.0	0.0	2.5	0.0	0.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.5	0.0	0.0				0.0	0.0	10.2	5.6	2.9	0.0
LnGrp LOS	C	A					A	A	B	A	A	A
Approach Vol, veh/h		56	A					614			404	
Approach Delay, s/veh		20.5						10.2			3.2	
Approach LOS		C						B			A	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		33.2			7.1	26.1		7.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		5.7			4.5	5.7		4.5				
Max Green Setting (Gmax), s		35.0			20.0	35.0		30.0				
Max Q Clear Time (g_c+11), s		5.4			2.5	13.6		3.3				
Green Ext Time (p_c), s		3.8			0.1	6.8		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			8.1									
HCM 6th LOS			A									
Notes												

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	\uparrow		${ }^{7}$	4
Traffic Volume (veh/h)	66	123	474	37	162	570
Future Volume (veh/h)	66	123	474	37	162	570
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approa	No		No			No
Adj Sat Flow, veh/h/ln	1709	1750	1695	1695	1736	1723
Adj Flow Rate, veh/h	71	132	510	40	174	613
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	3	0	4	4	1	2
Cap, veh/h	207	188	702	55	448	1116
Arrive On Green	0.13	0.13	0.45	0.45	0.09	0.65
Sat Flow, veh/h	1628	1483	1552	122	1654	1723
Grp Volume(v), veh/h	71	132	0	550	174	613
Grp Sat Flow(s),veh/h/ln	1628	1483	0	1673	1654	1723
Q Serve(g_s), s	1.9	4.2	0.0	13.1	2.4	9.5
Cycle Q Clear(g_c), s	1.9	4.2	0.0	13.1	2.4	9.5
Prop In Lane	1.00	1.00		0.07	1.00	
Lane Grp Cap(c), veh/h	207	188	0	757	448	1116
V/C Ratio(X)	0.34	0.70	0.00	0.73	0.39	0.55
Avail Cap(c_a), veh/h	1333	1215	0	1714	1649	1764
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.4	20.4	0.0	10.9	7.7	4.7
Incr Delay (d2), s/veh	0.7	3.5	0.0	2.6	0.4	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	/150. 7	0.2	0.0	3.7	0.4	1.4
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	20.2	23.9	0.0	13.5	8.1	5.5
LnGrp LOS	C	C	A	B	A	A
Approach Vol, veh/h	203		550			787
Approach Delay, s/veh	22.6		13.5			6.1
Approach LOS	C		B			A

Timer - Assigned Phs	2	4	5	6
Phs Duration (G+Y+Rc), s	37.6	11.2	9.5	28.1
Change Period (Y+Rc), s	6.0	5.0	5.0	6.0
Max Green Setting (Gmax), s	50.0	40.0	40.0	50.0
Max Q Clear Time (g_c+\|1), s	11.5	6.2	4.4	15.1
Green Ext Time (p_c), s	8.3	0.5	0.3	7.0

Intersection Summary
HCM 6th Ctrl Delay 10.9

HCM 6th LOS B

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M		1	个	\mathbf{T}	
Traffic Vol, veh/h	53	44	45	429	536	65
Future Vol, veh/h	53	44	45	429	536	65
Conflicting Peds, \#/hr	4	0	9	0	0	9
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	350	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	0	3	1	2
Mvmt Flow	57	47	48	461	576	70

	4	\rightarrow	\square	7		4	4	\dagger	p	\pm	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{7}$	4	7	${ }^{7}$	$\hat{\beta}$		${ }^{7}$	\uparrow	
Traffic Volume (veh/h)	54	82	45	47	79	99	33	326	30	116	373	44
Future Volume (veh/h)	54	82	45	47	79	99	33	326	30	116	373	44
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		0.99	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1682	1682	1723	1736	1736	1709	1709	1709	1736	1723	1723
Adj Flow Rate, veh/h	59	89	49	51	86	108	36	354	33	126	405	48
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	5	5	2	1	1	3	3	3	1	2	2
Cap, veh/h	582	481	265	581	821	690	257	624	58	307	610	72
Arrive On Green	0.47	0.47	0.47	0.47	0.47	0.47	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	1088	1016	559	1145	1736	1459	855	1538	143	922	1505	178
Grp Volume(v), veh/h	59	0	138	51	86	108	36	0	387	126	0	453
Grp Sat Flow(s),veh/h/ln	1088	0	1575	1145	1736	1459	855	0	1681	922	0	1684
Q Serve(g_s), s	2.4	0.0	3.7	2.0	2.0	3.1	2.6	0.0	13.2	9.0	0.0	16.2
Cycle Q Clear(g_c), s	4.4	0.0	3.7	5.7	2.0	3.1	18.8	0.0	13.2	22.2	0.0	16.2
Prop In Lane	1.00		0.36	1.00		1.00	1.00		0.09	1.00		0.11
Lane Grp Cap(c), veh/h	582	0	745	581	821	690	257	0	682	307	0	683
V/C Ratio(X)	0.10	0.00	0.19	0.09	0.10	0.16	0.14	0.00	0.57	0.41	0.00	0.66
Avail Cap(c_a), veh/h	582	0	745	581	821	690	257	0	682	307	0	683
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	12.0	0.0	11.3	12.9	10.8	11.1	25.6	0.0	17.0	25.6	0.0	17.9
Incr Delay (d2), s/veh	0.3	0.0	0.5	0.3	0.3	0.5	1.1	0.0	3.4	4.0	0.0	5.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.6	0.0	1.3	0.5	0.8	1.0	0.6	0.0	5.3	2.2	0.0	6.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.4	0.0	11.8	13.2	11.1	11.6	26.7	0.0	20.4	29.6	0.0	22.9
LnGrp LOS	B	A	B	B	B	B	C	A	C	C	A	C
Approach Vol, veh/h		197			245			423			579	
Approach Delay, s/veh		12.0			11.7			20.9			24.4	
Approach LOS		B			B			C			C	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		39.5		34.5		39.5		34.5				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		35.0		30.0		35.0		30.0				
Max Q Clear Time (g_c+11), s		6.4		24.2		7.7		20.8				
Green Ext Time (p_c), s		1.1		1.8		1.1		1.7				
Intersection Summary												
HCM 6th Ctrl Delay			19.5									
HCM 6th LOS			B									

Intersection
Intersection Delay, s/veh15.9
Intersection LOS \quad C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&		${ }^{7}$	F		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	38	45	121	22	43	42	55	233	14	22	332	48
Future Vol, veh/h	38	45	121	22	43	42	55	233	14	22	332	48
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	0	0	2	0	0	0	4	4	0	0	2	2
Mvmt Flow	41	49	132	24	47	46	60	253	15	24	361	52
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	2	WB
Conflicting Approach Left	SB	NB	EB	1
Conflicting Lanes Left	2	2	1	EB
Conflicting Approach RighNB	SB	WB	1	
Conflicting Lanes Right	2	2	1	20.6
HCM Control Delay	12.5	11.2	13.7	C

Lane	NBLn1	NBLn2 EBLn1 WBLn1 SBLn1 SBLn2				
Vol Left, $\%$	100%	0%	19%	21%	100%	0%
Vol Thru, $\%$	0%	94%	22%	40%	0%	87%
Vol Right, $\%$	0%	6%	59%	39%	0%	13%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	55	247	204	107	22	380
LT Vol	55	0	38	22	22	0
Through Vol	0	233	45	43	0	332
RT Vol	0	14	121	42	0	48
Lane Flow Rate	60	268	222	116	24	413
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.113	0.465	0.367	0.209	0.044	0.689
Departure Headway (Hd)	6.783	6.233	5.963	6.465	6.566	6.003
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	525	575	596	558	542	599
Service Time	4.572	4.022	4.062	4.465	4.345	3.781
HCM Lane V/C Ratio	0.114	0.466	0.372	0.208	0.044	0.689
HCM Control Delay	10.4	14.4	12.5	11.2	9.7	21.2
HCM Lane LOS	B	B	B	B	A	C
HCM 95th-tile Q	0.4	2.4	1.7	0.8	0.1	5.4

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 7.4 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\uparrow	
Traffic Vol, veh/h	25	15	19	3	27	5	11	22	1	8	18	26
Future Vol, veh/h	25	15	19	3	27	5	11	22	1	8	18	26
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Heavy Vehicles, \%	0	0	0	0	0	0	0	0	100	0	11	0
Mvmt Flow	34	20	26	4	36	7	15	30	1	11	24	35
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	WB	1
Conflicting Approach Right	NB	SB	1	EB
Conflicting Lanes Right	1	1	7.5	1
HCM Control Delay	7.5	7.4	A	7.3
HCM LOS	A	A	A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	32%	42%	9%	15%
Vol Thru, \%	65%	25%	77%	35%
Vol Right, \%	3%	32%	14%	50%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	34	59	35	52
LT Vol	11	25	3	8
Through Vol	22	15	27	18
RT Vol	1	19	5	26
Lane Flow Rate	46	80	47	70
Geometry Grp	1	1	1	1
Degree of Util (X)	0.054	0.089	0.054	0.076
Departure Headway (Hd)	4.221	4.028	4.094	3.886
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	839	881	866	911
Service Time	2.293	2.091	2.163	1.955
HCM Lane V/C Ratio	0.055	0.091	0.054	0.077
HCM Control Delay	7.5	7.5	7.4	7.3
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.2	0.3	0.2	0.2

120: N 10th Ave \& Stayton Rd SE Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Denied Del/Veh (s)	0.1	0.1	0.1	0.2		0.2	0.1	0.1	0.1	0.0	0.0
Total Del/Veh (s)	3.8	3.0	2.8	1.3		0.9	4.7	1.3	1.7	6.5	4.7

120: N 10th Ave \& Stayton Rd SE Performance by movement

Movement	All
Denied Del/Veh (s)	0.1
Total Del/Veh (s)	2.5

Appendix C Existing PM Queueing

	\dagger	4	\dagger	(\downarrow
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	71	132	550	174	613
v/c Ratio	0.37	0.45	0.69	0.31	0.50
Control Delay	37.5	12.1	20.8	4.4	6.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	37.5	12.1	20.8	4.4	6.0
Queue Length 50th (ft)	29	0	176	17	90
Queue Length 95th (ft)	78	50	345	38	172
Internal Link Dist (ft)	503		600		854
Turn Bay Length (ft)		160		120	
Base Capacity (vph)	926	910	1200	1023	1716
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.08	0.15	0.46	0.17	0.36

Intersection Summary

	$\stackrel{ }{ }$	\rightarrow	\dagger		4	\dagger	\downarrow	\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	119	268	66	168	96	465	52	610
v/c Ratio	0.43	0.75	0.29	0.60	0.60	0.56	0.42	0.76
Control Delay	27.7	43.3	25.4	39.9	55.7	20.7	52.3	29.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.7	43.3	25.4	39.9	55.7	20.7	52.3	29.9
Queue Length 50th (ft)	49	124	26	76	51	167	28	266
Queue Length 95th (ft)	96	231	59	153	114	361	73	\#628
Internal Link Dist (ft)		1212		498		611		700
Turn Bay Length (ft)	100		100		175		125	
Base Capacity (vph)	431	594	453	613	388	835	400	799
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.45	0.15	0.27	0.25	0.56	0.13	0.76
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.								

	4	\rightarrow	\dagger		4	4	\dagger	,	\downarrow
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	59	138	51	86	108	36	387	126	453
v/c Ratio	0.10	0.18	0.09	0.11	0.15	0.16	0.56	0.45	0.66
Control Delay	11.5	8.1	11.4	11.3	3.1	16.4	20.5	22.5	23.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.5	8.1	11.4	11.3	3.1	16.4	20.5	22.5	23.0
Queue Length 50th (ft)	14	22	12	21	0	10	129	41	159
Queue Length 95th (ft)	34	52	31	44	24	30	214	91	259
Internal Link Dist (ft)		1317		1291			1211		581
Turn Bay Length (ft)	90		70		55	100		145	
Base Capacity (vph)	563	775	542	819	731	225	686	280	689
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.18	0.09	0.11	0.15	0.16	0.56	0.45	0.66

Intersection Summary

Appendix D Crash History

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Golf Club Rd \& OR 22 Westbound Ramps
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
ANGLE	0	3	2	5	0	4	0	3	1	5	0	5	0	0
2015 TOTAL	0	3	2	5	0	4	0	3	1	5	0	5	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	2	0	1	0	1	0	1	0	0
2013 TOTAL	0	1	0	1	0	2	0	1	0	1	0	1	0	0
YEAR: 2012														
HEAD-ON	0	0	1	1	0	0	0	0	1	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
2012 TOTAL	0	0	2	2	0	0	0	0	2	1	1	2	0	0
YEAR: 2011														
ANGLE	0	1	0	1	0	2	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	1	0	1	0	0
2011 TOTAL	0	1	1	2	0	2	0	1	1	2	0	2	0	0
FINAL TOTAL	0	5	5	10	0	8	0	5	4	9	1	10	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Golf Club Rd \& OR 22 Eastbound Ramps
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2014														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	1	0	1	0	1
2014 TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	1
FINAL TOTAL	0	2	0	2	0	2	0	1	1	2	0	2	0	1

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 4/12/2018

162 NORTH SANTIAM
OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION
PAGE: 1 tRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING
January 1, 2011 through December 31, 2015

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Golf Club Rd \& Mill Creek Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	0	1	1	0	0
2015 TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR: 2014														
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2014 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2011														
REAR-END	0	1	1	2	0	4	0	2	0	2	0	2	0	0
2011 TOTAL	0	1	1	2	0	4	0	2	0	2	0	2	0	0
FINAL TOTAL	0	2	2	4	0	5	0	4	0	3	1	4	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CITY Of STAYton, marion County transportation data section - CRASh analysis and reporting unit
-
anuary 1, 2011 through December 31, 2015

	S	D				CIty street		INT-TYP				
SER\#	E	A U	C 0	DATE		FIRST STREET	RD Char	(MEDIAN)	INT-REL	OFF-RD	WTHR	CRASH TYP
INVEST	E	L G	H R	DAY/TIME	FC	SECOND STREET	DIRECT	Legs	traf-	RNDBT	SURF	COLL TYP
UNLOC?	D	c s	L K	LAT/LONG	DISTNC	INTERSECTION SEQ \#	LOCTN	(\#LANES)	CONTL	DRVWY	Light	SVRTY

03764 N N N 10/25/2014 16 GOLF CLUB RD IN

CITY					Sat	48	0	SHAFF RD	N
No	44	48	35.21	-122	48	53.21	1		

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Golf Club Rd / Wilco Rd \& Shaff Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2014														
REAR-END	0	1	0	1	0	1	0	0	1	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0
FINAL TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Wilco Rd \& W Washington St / Ida St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
ANGLE	0	1	0	1	0	3	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	0	1	0	3	0	1	0	1	0	1	0	0
YEAR: 2013														
ANGLE	0	1	1	2	0	1	0	2	0	2	0	2	0	0
2013 TOTAL	0	1	1	2	0	1	0	2	0	2	0	2	0	0
FINAL TOTAL	0	2	1	3	0	4	0	3	0	3	0	3	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.
URBAN NON-SYSTEM CRASH LISTING

$$
\text { January 1, } 2011 \text { through December 31, } 2015
$$

| SPCL USE | |
| :--- | :--- | :--- |
| TRLR QTY | MOVE |
| OWNER | FROM |
| V\# | |
| VEH TYPE | TO |

PRVTE	NE	SW						02
PSNGR CAR			01	DRVR				000

02 none 0 Strght $\begin{array}{ll}\text { PRVTE } & \mathrm{N} \\ \mathrm{s}\end{array}$
PSNGR CAR 01 DRVR INJC 20 M OR-Y
028
00

000
000
00
02 PSNG INJC 16 F
000
00
00

01	NONE	0	STRGHT
PRVTE		SW	NE

01 DRVR NONE 51 M OR-Y
000
$2013,080,057 \quad 03$
PSNGR CAR NE
<25
$02 \begin{array}{llll}\text { NONE } \\ \text { RENTL }\end{array} \quad \begin{gathered}\text { STRGHT } \\ \text { E }\end{gathered}$
01 DRVR NONE 59 F OTH-Y
021
000 013,057
00
N-RES
03 NONE 0 STOP PSNGR CAR

01 DRVR NONE 49 M OR-Y
000
011 080,057
00

01 DRVR NONE 53 F OR-Y
028
000
PSNGR CAR OR<25
02 NONE 0 Strght PSNGR CAR NE SW

01 DRVR INJC 62 F OR-Y
$000 \quad 015$
00
00

January 1, 2011 through December 31, 2015
CITY OF STAYton, marion county

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Shaff Rd \& Gardner Ave
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	1	2	0	1	0	2	0	2	0	2	0	0
YEAR: 2012														
REAR-END	0	1	1	2	0	2	0	2	0	2	0	2	0	0
2012 TOTAL	0	1	1	2	0	2	0	2	0	2	0	2	0	0
YEAR: 2011														
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	0	1	0	1	1	0	1
2011 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	1
FINAL TOTAL	0	2	3	5	0	3	0	4	1	4	1	5	0	1

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. CRASH SUMMARIES BY YEAR BY COLLISION TYPE
W. Washington St \& Gardner Ave

January 1, 2011 through December 31, 2015

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Center St \& Sublimity Blvd / OR 22 Westbound Ramps
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
TURNING MOVEMENTS	0	1	2	3	0	1	0	2	1	0	3	3	0	0
2015 TOTAL	0	1	2	3	0	1	0	2	1	0	3	3	0	0
YEAR: 2014														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2012														
ANGLE	0	1	0	1	0	4	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	1	1	2	0	2	0	2	0	2	0	2	0	0
2012 TOTAL	0	2	1	3	0	6	0	3	0	3	0	3	0	0
YEAR: 2011														
ANGLE	0	0	1	1	0	0	1	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2011 TOTAL	0	0	2	2	0	0	1	2	0	2	0	2	0	0
FINAL TOTAL	0	4	5	9	0	8	1	8	1	6	3	9	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

162 NoRTh SANTIAM TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

S D						
SER\#	E A	AUC	DATE		COUNTY	
Invest	E L	L G H	R DAY/	TIME		Ity
UNLOC?	D C	CS L	K LAT/	Long		RBAN AREA
02636	N N	N N	08/06/2014			ARION
County			Wed	1 P	SUBLIMITY	
No		49	7.31	-122		39.58
03673	NNNNN		N 09/25/2015		MARION	
COUNTY			Fri	5A		UBLIMITY
						TAYTON UA
No		49	7.31	-122		39.58

$\begin{array}{llll}\text { DRVR } \operatorname{INJC} \\ 17 & \mathrm{~F} & \mathrm{OR}-\mathrm{Y} \\ \mathrm{OR}<25\end{array}$

PSNGR CAR
$02 \begin{gathered}\text { NONE } \\ \text { PRVTE }\end{gathered} \quad \begin{gathered}\text { STRGHT } \\ \mathrm{S} \\ \mathrm{S}\end{gathered}$
1 DRVR INJB 32 F OR-Y OR<25
pSNGR CAR
01 DRVR NONE 54 F OR-Y
000
000
000

$\begin{array}{cllllllll}\text { 5-LEG } & \text { N } & \text { N } & \text { CLR } & \text { O-1 } & \text { L-TURN } & 01 & \text { NONE } & 0 \\ \text { STOP } & \text { TURN-L } \\ 1 & & \text { N } & \text { DRY } & \text { TURN } & \text { PRVTE } & \text { N } & \text { E } \\ 1 & \text { N } & \text { DLIT } & \text { PDO } & \text { PSNGR CAR } & \end{array}$
01 DRVR NONE 44 M NONE
NONE
OR<25
028,004
000

02 NONE 0 STRGHT
PRVTE S N
01 DRVR NONE 48 M
000
000
00
PSNGR CAR OR<25

087
$000 \quad 087$
02
00

$\begin{array}{lclll}1 & 14 & 4 & \text { INTER } \\ \text { CN } & 0 & \text { CENTER } & \text { ST } & \text { CN }\end{array}$

N WET TURN
PSNGR CAR
01 DRVR NONE 38 F OR-Y
028,004
000

02 NONE 0 STRGHT
PRVTE S N
01 DRVR NONE 59 F OR-Y
000
$000 \quad 087$
00

Center St \& Sublimity Blvd / OR 22 Westbound Ramps January 1, 2011 through December 31, 2015

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Cascade Hwy \& OR 22 Eastbound Ramps
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
REAR-END	0	2	2	4	0	2	0	4	0	4	0	4	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2015 TOTAL	0	2	3	5	0	2	0	5	0	5	0	5	0	0
YEAR: 2014														
REAR-END	0	2	1	3	0	2	0	3	0	3	0	3	0	0
2014 TOTAL	0	2	1	3	0	2	0	3	0	3	0	3	0	0
YEAR: 2013														
REAR-END	0	2	4	6	0	3	0	4	2	4	2	6	0	0
2013 TOTAL	0	2	4	6	0	3	0	4	2	4	2	6	0	0
YEAR: 2012														
REAR-END	0	1	4	5	0	1	0	4	1	4	1	5	0	0
2012 TOTAL	0	1	4	5	0	1	0	4	1	4	1	5	0	0
YEAR: 2011														
REAR-END	0	2	3	5	0	2	0	4	1	4	1	5	0	0
2011 TOTAL	0	2	3	5	0	2	0	4	1	4	1	5	0	0
FINAL TOTAL	0	9	15	24	0	10	0	20	4	20	4	24	0	0

[^2]CDS380 4/12/2018

162 NORTH SANTIAM

04034	N N N	11/14/2013		MARIoN		1	14	1
County		Thu	1 P			CN	0	
				Stayton				
No	4448	. 82	-122	4740.19			BN1	

03667	N N N N	10/18/2014	MARION	1	14	1
State		Sat 4P		CN	0	
			Stayton			
No	44485	5.59 -122	4739.51		N1	s00

$$
\begin{aligned}
& 13.25 \\
& 0162 \mathrm{BN} 100 \mathrm{~S} 00
\end{aligned}
$$

$4448 \quad 57$
0162BN100S00

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CONTINUOUS SYSTEM CRASH LISTING

Cascade Hwy \& OR 22 Eastbound Ramps
January 1, 2011 through December 31, 2015

INTER	CROSS	N	N RAIN	S-1STOP
SW		YIELD	N	WET
REAR				
09	1		N DAY	PDO

01 NONE 0 TURN-R
PRVTE W S
PSNGR CAR
02 NONE 0 STOP

01 DRVR NONE 00 M UNK 026
000
07
07
pSNGR CAR
01 DRVR NONE 20 M OR-Y 000
000
I NONE 0 STRGHT OR<25

PRVTE W E
01 DRVR NONE 49 M OTH-Y 016,026 000
27
00

INTER	CROSS	N	N CLD	S-1STOP	
SW		YIELD	N	DRY	REAR
09	1		N DAY	INJ	

PRNGR CAR
0

$$
27
$$

02 NONE 0 STOP
PRVTE W E
011
PSNGR CAR
01 DRVR INJB 70 F OR-Y
000
000
00
02 PSNG INJC 74 m
000
000
01 none 0 strght
PRVTE W E
PSNGR CAR
$02 \begin{array}{lll}\text { NONE } \\ \text { PRVTE } & 0 & \text { STOP } \\ \text { W } \\ \text { W }\end{array}$
PSNGR CAR E
01 DRVR NONE 00 M UN
or<2
01 none 0 strght
PRVTE W E
$\begin{array}{llllll}\text { PSNGR CAR } & 01 \text { DRVR NONE } & 47 \mathrm{M} \text { OR-Y } & 016,026 & 038\end{array}$
27,07
00

02 none 0 Stop
PRVTE W E OR<25
ancr car e
01 DRVR INJC 43 F OR-Y
000
011
00

January 1, 2011 through December 31, 2015

CITY Of stayton, marion county

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Cascade Hwy \& Whitney St
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \\ \hline \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2014														
TURNING MOVEMENTS	0	1	1	2	0	1	0	1	1	0	2	2	0	0
2014 TOTAL	0	1	1	2	0	1	0	1	1	0	2	2	0	0
FINAL TOTAL	0	1	1	2	0	1	0	1	1	0	2	2	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CITY OF STAYTON, MARION COUNTY

RBAN NON-SYSTE CRASH LISI
*Crash data file for 2017 is approximately 55% complete. The data is preliminary and subject to change.

$\begin{array}{ll}\text { SPCL USE } & \\ \text { TRLR QTY } & \text { M } \\ \text { OWNER } & \text { F }\end{array}$
$\begin{array}{llllllll}\text { TRLR QTY } & \text { MOVE } \\ \text { OWNER } & \text { FROM } & & \text { PRTC } & \text { INJ } & \text { A } & \text { E } & \\ \text { VEH TYPE } & \text { TO }\end{array}$
\square
$\begin{array}{lll}\text { PRVTE } & \mathrm{S} & \mathrm{N} \\ \text { SNGR CAR }\end{array}$
01 DRVR INJC $72 \mathrm{M} \begin{aligned} & \text { OR-Y } \\ & \text { OR<25 }\end{aligned}$ R<25 PRVTE E S

02 PSNG INJA 54 M OR<25 000000
000
02 PSNG INJA 54 M 0000
00
00

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Fatal Crashes in City of Stayton 01/01/2017 through 12/31/2017*
*Crash data file for 2017 is approximately 55% complete. The data is preliminary and subject to change.

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD
YEAR: 2017														
TURNING MOVEMENTS	1	0	0	1	1	2	0	1	0	1	0	1	0	0
2017 TOTAL	1	0	0	1	1	2	0	1	0	1	0	1	0	0
FINAL TOTAL	1	0	0	1	1	2	0	1	0	1	0	1	0	0

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable , non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre- 2011 crash statistics. For all disclaimers, see
https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Cascade Hwy / 1st Ave / Shaff Rd/ Fern Ridge Rd
January 1, 2011 through December 31, 2015
CIty of stayton, marion county

03592	N N N		$10 / 24 / 2012$	17	FERN RIDGE RD	
NONE			Wed	5 P	0	1ST AVE
No	44	48	35.15	-122	47	39.51

03852	N N N		11/13/2012	14	FERN RIDGE RD	
CITY			Tue	8 P	0	1ST AVE
No	44	48	35.15	-122	47	39.51

Cascade Hwy / 1st Ave / Shaff Rd/ Fern Ridge Rd
CIty of stayton, marion county
January 1, 2011 through December 31, 2015

CDS380 4/12/2018

CIty of stayton, marion county

00624	N N N N N	$02 / 22 / 2014$	14	SHAFF RD			
CITY				Sat	3A	0	1 ST AVE
No	44	48	35.23	-122	47	39.35	1

| CITY | | Sat | 7 P | 0 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}10 & 44 & 48 & 35.23 & -122 & 47 & 39.35\end{array}$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION
transportation data section - CRASH analysis and reporting unit
URBAN NON-SYSTEM CRASH LISTING
Cascade Hwy / 1st Ave / Shaff Rd/ Fern Ridge Rc January 1, 2011 through December 31, 2015

Cascade Hwy / 1st Ave / Shaff Rd/ Fern Ridge Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
ANGLE	0	2	0	2	0	4	0	2	0	1	1	2	0	0
2014 TOTAL	0	2	0	2	0	4	0	2	0	1	1	2	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	1	0	0	1	1	0	1	0	0
2013 TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0
YEAR: 2012														
ANGLE	0	1	1	2	0	1	0	0	2	1	1	2	0	0
PEDESTRIAN	0	1	0	1	0	1	0	0	1	0	1	1	0	0
REAR-END	0	0	5	5	0	0	0	3	2	4	1	5	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2012 TOTAL	0	2	7	9	0	2	0	4	5	6	3	9	0	0
YEAR: 2011														
ANGLE	0	2	0	2	0	4	0	2	0	2	0	2	0	0
2011 TOTAL	0	2	0	2	0	4	0	2	0	2	0	2	0	0
FINAL TOTAL	0	7	7	14	0	11	0	8	6	10	4	14	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

SPCL USE	
TRLR QTY	MOVE
OWNER	FROM
V\#	VEH TYPE
TO	

Move
FROM
$\begin{array}{llllll} & & \\ \text { PRTC } & \text { INJ } & \text { S } & \\ G & E & \text { LICNS } & \text { PED }\end{array}$
01124 N N N 04/08/2014 $14 \quad$ REGIS ST
CITY Tue 6P $0 \quad 1 \mathrm{ST}$ AVE
INTE
N
$\begin{array}{lllllll}00997 & \text { N N N N N } & 04 / 03 / 2013 & 14 & \text { REGIS ST } \\ \text { CITY } & & & \text { Wed } & 3 \mathrm{P} & 0 & 1 \text { ST AVE } \\ \text { No } & 44 & 48 & 28.68 & -122 & 47 & 39.52\end{array}$

INTER	3-LEG	N	N	CLR	S-1STOP
CN		UNKNOWN	N	DRY	REAR

01	NONE	0	STRGHT
PRVTE	N	S	
PSNGR CAR			

1	

R<25

01 DRVR INJB 38 F OR-Y
043,026
000
02 NONE 0 STOP
02 pGNG inJC 02 M OR<2 PRVTE N

01 DRVR INJC 72 F OR-Y
000
011004 SNGGR CAR

OR <2

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

1st Ave \& Regis St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
REAR-END	0	1	0	1	0	3	0	1	0	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	3	0	1	0	1	0	1	0	0
YEAR: 2013														
REAR-END	0	1	0	1	0	4	0	1	0	1	0	1	0	0
2013 TOTAL	0	1	0	1	0	4	0	1	0	1	0	1	0	0
FINAL TOTAL	0	2	0	2	0	7	0	2	0	2	0	2	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

1st Ave \& Hollister St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2011														
ANGLE	0	1	0	1	0	2	0	1	0	1	0	1	0	0
2011 TOTAL	0	1	0	1	0	2	0	1	0	1	0	1	0	0
FINAL TOTAL	0	1	0	1	0	2	0	1	0	1	0	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

CIty of stayton, marion county

	s	D	S			CITY STRem							
SER\#	E	A U	C 0	DATE		FIRST STREET	RD CHAR	(MEDTAN)	INT-REL	OFF-RD	WTHR	CRASH TYP	
INVEST	E	L G	H R	DAY/TIME	FC	SECOND STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL TYP	
UNLOC?	D	C 5	L K	LAT/LONG	DISTNC	INTERSECTION SEQ \#	LOCTN	(\#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V\#

PRTC INJ $\begin{array}{ll}\mathrm{A} & \mathrm{S} \\ \mathrm{G} & \mathrm{E} \\ \mathrm{E} & \mathrm{X}\end{array}$
LEGS TRAF- RNDBT SURE COLI TYP INTER CROSS N
$\begin{array}{lllllll}01948 & \text { N N N N N } & \text { 06/17/2011 } & 14 & \text { HOLLISTER ST } & \text { INTER } \\ \text { CITY } & & \text { Fri } & \text { 5P } & 0 & \text { 1ST AVE } & \text { CN }\end{array}$
CITY Fri 5P 0 1ST AVE
1

01 DRVR NONE 26 M OR-Y
OR<25
$\begin{array}{llll}02 & \text { PSNG } & \text { INJC } & 24 \\ 0 & \text { PSNG } & \text { NO }<5 & 01\end{array}$
04 PSNG INJC 03 F
05 PSNG NO<5 02 F

01 DRVR NONE 22 F OR-Y

PSNGR CAR

$$
01 \text { DRVR NONE } 22 \begin{aligned}
\text { F } \begin{array}{l}
\text { OR-Y } \\
\text { OR<25 }
\end{array}
\end{aligned}
$$

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

1st Ave \& Locust St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2015 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2013														
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2012														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2012 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2011 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL TOTAL	0	0	4	4	0	0	0	4	0	4	0	4	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

		D			DATE				CIty street
	P		R	s w					
SER\#	E	A	A U	C 0					first stree
INVEST	E	L	G	H R	DAY/TI	IME		FC	SECOND STRE
UNLOC?	D	C	S	L K	LAT/LO			DISTNC	INTERSECTIO
04050	N	N	N	N N	10/20/	2015	5	16	LOCUST ST
CITY					Tue	3P		0	1 St AVE
No	44		48	9.26	-122	473	39.5		1
03138	Y	N	N		09/22/	2011		17	LOCUST ST
NONE					Thu	6 P		0	1ST AVE
No	44		48	9.29	-122	473	39.5		1

01025	N N N		$03 / 23 / 2012$		14	LOCUST ST	
NO RPT			Fri	12 P	0	1ST AVE	
No	44	48	9.26	-122	47	39.57	1

| 01687 | $\mathrm{~N} N \mathrm{~N}$ Y | $05 / 24 / 2013$ | 14 | LOCUST ST | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CITY | | Fri | 2 P | 0 | 1 ST AVE |

INTER	3-LEG	N	N	CLR	ANGL-OTH
CN		STOP SIGN	N	DRY	TURN
02	0		N	DAY	PDO

SPCL USE		
	tRLR QTY	move
	OWNER	EROM
	veh type	T0
01	NONE 0	TURN-L
	PRVTE	W N
	PSNGR CAR	
02	NONE	StRght
	PRVTE	s
	PSNGR CAR	

$\begin{array}{llllllll} & & & \text { A } & \text { S } & & \\ & \text { PRTC } & \text { INJ } & \text { G } & \text { E } & \text { LICNS } & \text { PED } \\ \text { PlyPE } & \text { SVRTY } & \text { E } & \text { X } & \text { RES } & \text { LOC }\end{array}$

$\begin{array}{lll} & \text { SPCL USE } & \\ \text { TRLR QTY } & \text { MOVE } \\ \text { OWNER } & \text { FROM } \\ \text { O\# } & \text { VEH TYPE } & \text { TO }\end{array}$

$T Y E$

INTER 3-LEG N
$\begin{array}{lrl}\text { N } & \text { NTOP } & \text { CLR } \\ \text { STGN } & \\ N & \text { DRY }\end{array}$
ANGL-
TURN

01	NONE	TURN
PRVTE	W	N
PSNGR CAR		

01 DRVR NONE 16 F OR-Y
028

INTER	3-LEG	N	N	CLR	S-1STOP
CN		UNKNOWN	N	DRY	REAR

N
DRY REAR
N DAY PDO

01 DRVR NONE 57 F
000
000
000

01						02				
NONE	0	TURN-L					015	00		
PRVTE	W	N								
PSNGR CAR			01	DRVR	NONE	25	F OR-Y	028	000	02

02 PSNG NO<5 02 M

000

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

1st Ave \& Washington St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
TURNING MOVEMENTS	0	1	1	2	0	1	0	2	0	0	2	2	0	0
2014 TOTAL	0	1	1	2	0	1	0	2	0	0	2	2	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	2	0	2	0	2	1	1	1	2	0	2	0	0
2013 TOTAL	0	4	0	4	0	4	1	3	1	4	0	4	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	1	1	2	0	2	0	2	0	2	0	2	0	0
2012 TOTAL	0	1	1	2	0	2	0	2	0	2	0	2	0	0
YEAR: 2011														
TURNING MOVEMENTS	0	0	2	2	0	0	0	0	2	2	0	2	0	0
2011 TOTAL	0	0	2	2	0	0	0	0	2	2	0	2	0	0
FINAL TOTAL	0	6	4	10	0	7	1	7	3	8	2	10	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CIty of stayton, marion county
January 1, 2011 through December 31, 2015

INTER	CROSS	N	N	CLD	S-OTHER
W		L-GRN-SIG	N	WET	TURN
06	0		N	DAY	INJ

02	NONE	0	TURN-L
PRVTE	W	N	
PSNGR CAR			

$\begin{array}{llllll}01 & \text { DRVR } & \text { NONE } & 20 \mathrm{~F} & \text { OR- } \\ 02 & \text { PSNG } & \text { INJC } & 15 & \mathrm{~F}\end{array}$
R-25

01 DRVR NONE 43 M OR-Y
00

INTER	cross	N	N	RAIN	O-1 L-TURN
CN		trf SIGNAL	N	WET	TURN
01	0		N	DAY	PDO

01	NONE	0	STRGHT
PRVTE	N	S	
PSNGR CAR			

01 DRVR NONE 19 M OR
026
$\begin{array}{llllllll}\text { No } & 44 & 48 & 2.77 & -122 & 47 & 39.67\end{array}$
1

$\begin{array}{lllllllllll}\text { INTER } & \text { CROSS } & \text { N } & \text { N } & \text { RAIN } & \text { O-1 } & \text { L-TURN } & 01 & \text { NONE } & 0 & \text { STRGHT } \\ \text { CN } & & \text { TRF SIGNAL } & \text { N } & \text { WET } & \text { TURN } & & \text { PRVTE } & & \text { N } & \text { S }\end{array}$
01 DRVR NONE 34 M OR-Y

000
000

| SEMI TOW 01 | 006 | 000 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DRVR NONE | 55 M OR-Y | 006 | 000 |

02	NONE	0	TURN-R
PRVTE	W	S	
PSNGR CAR			

01 DRVR INJB 43 F OR-Y
$032 \quad 000$

01 DRVR NONE 36 F OR-Y

	none	turn-L								
	prvte	s								000
psngr car			01	DRVR	NONE	20	M	OR-Y OR<25	004,028	000
	NONE 0	turn-L								
	PRVTE	S W								00
	PSNGR CAR		01	DRVR	none	43	M	OR-Y	020	000

00678	N N N N N	$02 / 24 / 2012$	14	WASHINGTON ST			
CITY			Fri	9 A	0	1ST AVE	
No	44	48	2.75	-122	47	39.67	1

$\begin{array}{llllll}\text { INTER } & \text { CROSS } & \text { N } & \text { N } & \text { CLR } & \text { ANGL-OTH } \\ \text { CN } & & \text { TRF SIGNAL } & \text { N } & \text { DRY } & \text { TURN }\end{array}$ PRVTE S W

January 1, 2011 through December 31, 2015

CIty of stayton, marion county

02566	N N N N N	$08 / 01 / 2014$	14	WASHINGTON ST		
CITY			Fri	11 P	0	1ST AVE
No	44	48	2.70	-122	47	39.57

03288 N N N N N 09/30/2012 16 WASHINGTON ST

02521 N N N 07/27/2013 14 WASHINGTON ST $\begin{array}{lllllllll}\text { CITY } & & & & \text { Sat } & 6 \mathrm{P} & 0 & 0 & \text { 1ST AVE }\end{array}$

January 1, 2011 through December 31, 2015

January 1, 2011 through December 31, 2015

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

1st Ave \& Ida St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2014														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
PEDESTRIAN	0	1	0	1	0	1	0	1	0	0	1	1	0	0
2014 TOTAL	0	1	1	2	0	1	0	2	0	1	1	2	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	2	0	0	1	1	0	1	0	0
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2013 TOTAL	0	2	0	2	0	3	0	1	1	2	0	2	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
2012 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR: 2011														
TURNING MOVEMENTS	0	1	0	1	0	2	0	1	0	1	0	1	0	0
2011 TOTAL	0	1	0	1	0	2	0	1	0	1	0	1	0	0
FINAL TOTAL	0	5	2	7	0	7	0	5	2	5	2	7	0	0

[^3]TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Fern Ridge Rd \& 3rd Ave
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NONFATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
ANGLE	0	0	1	1	0	0	0	0	1	0	1	1	0	0
2015 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR: 2012														
ANGLE	0	1	1	2	0	1	0	1	1	1	1	2	0	0
2012 TOTAL	0	1	1	2	0	1	0	1	1	1	1	2	0	0
YEAR: 2011														
ANGLE	0	0	1	1	0	0	0	0	1	1	0	1	0	0
2011 TOTAL	0	0	1	1	0	0	0	0	1	1	0	1	0	0
FINAL TOTAL	0	1	3	4	0	1	0	1	3	2	2	4	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CIty of stayton, marion county
URBAN NON-SYSTEM CRASH LISTING
January 1, 2011 through December 31, 2015

05196	N N N N N	$12 / 23 / 2015$	17	FERN RIDGE RD			
CITY			Wed	5 P	0	3RD AVE	
No	44	48	35.28	-122	47	31.53	1

INTER	CROSS	N	N	RAIN	ANGL-OTH
CN		STOP SIGN	N	WET	ANGL
04	0		N	DLIT	PDO

v\#	$\begin{aligned} & \text { SPCL USE } \\ & \text { TRLR QTY } \\ & \text { OWNER } \\ & \text { VEH TYPE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MOVE } \\ & \text { FROM } \\ & \text { TO } \\ & \hline \end{aligned}$	P\#	$\begin{aligned} & \text { PRTC } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { INJ } \\ & \text { SVRTY } \end{aligned}$	A G E	S E X	$\begin{aligned} & \text { LICNS } \\ & \text { RES } \\ & \hline \end{aligned}$	PED LOC	ERROR	ACTN	EVENT	CAUSE	
01	NONE 0	StRGht											02	
	PRVTE	E W									000		00	
	PSNGR CAR		01	DRVR	NONE	41	F	$\begin{aligned} & \text { NONE } \\ & \text { OR<25 } \end{aligned}$		000	000		00	
02	none 0	Strght												
	PRVTE	N S									015		00	
	PSNGR CAR			01	DRVR	none	25	M	OR-Y		028	000		02
									OR>25					
01	none 0	StRGht											10	
	PRVTE	E W									000		00	
	pSNGR CAR			01	DRVR	NONE	16	M	OR-Y		015	000		10
									OR<25					
02	NONE 0	Strght												
	PRVTE	N S									015		00	
	PSNGR CAR			01	DRVR	NONE	41	M	OR-Y		000	000		00
									OR<25					
01	none 0	Strght										013	02	
	PRVTE	w E									000		00	
	PSNGR CAR		01	DRVR	NONE	57	F	OR-Y		000	000		00	
								OR<25						
02	NONE 0	Strght												
	PRVTE	N S									015	013	00	
	pSngr car		01	DRVR	NONE	36	F	OR-Y		028	000		02	
								OR<25						
			02	PSNG	InJC	06	M			000	000		00	
03	none 0	Stop												
	PRVTE	S N									022		00	
	PSNGR CAR		01	DRVR	NONE	37	M	OR-Y		000	000		00	
								OR<25						
	none 0	Strght											22	
	PRVTE	S N									000		22	
	PSNGR CAR		01	DRVR	NONE	57	F	$\begin{aligned} & \text { OR-Y } \\ & \text { OR<25 } \end{aligned}$		021,017	000		00	
	NONE 0	Strght												
	PRVTE	w E									000		00	
	pSNGR CAR		01	DRVR	none	60	M	OR-Y		000	000		00	
								OR>25						

3rd Ave \& Ida St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \\ & \hline \end{aligned}$	PEOPLE INJURED	TRUCKS	DRY SURF	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$

YEAR:

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CITY OF Stayton, marion county
URBAN NON-SYSTEM CRASH LISTIN
January 1, 2011 through December 31, 2015

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10th Ave \& Santiam St
January 1, 2011 through December 31, 2015

YEAR:

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

Fern Ridge Rd \& OR 22 North Santiam Hwy (162) January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2014														
ANGLE	0	2	0	2	0	4	0	2	0	2	0	2	0	0
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	0	1	0	1	0	0	1
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2014 TOTAL	0	3	1	4	0	5	0	3	1	3	1	3	0	1
YEAR: 2012														
ANGLE	0	2	0	2	0	7	0	1	1	2	0	2	0	0
REAR-END	0	0	1	1	0	0	0	0	1	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	0	1	1	0	0
2012 TOTAL	0	2	2	4	0	7	0	2	2	3	1	4	0	0
YEAR: 2011														
ANGLE	0	1	2	3	0	5	0	3	0	3	0	3	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2011 TOTAL	0	1	3	4	0	5	0	4	0	4	0	4	0	0
FINAL TOTAL	0	7	6	13	0	18	0	10	3	11	2	12	0	1

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 4/11/2018

162 NORTH SANTIAM

$\begin{array}{lr}1 & 02 \\ \text { MN } & 0\end{array}$
14.30

016200100500

No RPT
No $\quad \begin{array}{lllllll}44 & 48 & 35.96 & -122 & 46 & 30.37\end{array}$

01922 NNNNN 06/16/2011 MARION
STATE \quad Thu 6P

No $\quad \begin{array}{lllllll}44 & 48 & 35.95 & -122 & 46 & 30.37\end{array}$

$\begin{array}{lr}1 & 02 \\ \text { MN } & 0\end{array}$
MN ${ }^{0}$
14.30
016200100500
$\begin{array}{lr}1 & 02 \\ \text { MN } & 0\end{array}$
MN ${ }^{14.30}$
14.30
016200100500

016200100500

CROSS	N	N CLR	ANGL-OTH	01	NONE	0	STRGHT		
		STOP SIGN	N	NRY	ANGL		PRVTE	E	W

$\begin{array}{lcllll}\text { INTER } & \text { CROSS } & \text { N } & \text { N } & \text { CLR } & \text { ANGL-OTH } \\ \text { CN } & & \text { STOP SIGN } & \text { N } & \text { DRY } & \text { ANLL } \\ 01 & 0 & & \text { N } & \text { DAY } & \text { INJ }\end{array}$
n DAY INJ
PRVTE 0 STRGHT
$\begin{array}{ll}\text { PRVTE } & \text { n } \\ \text { SNAGR CAR }\end{array}$
PSNGR CAR
2 NONE $0 \quad$ STRGHT

PSNGR CAR
01 DRVR INJB 63 F OR-Y 000 OR<25

01 | NONE | | |
| :--- | :--- | :--- |
| PRVTE | 0 | $\begin{array}{c}\text { STRGHT } \\ \text { ES }\end{array}$ |

PRVTE
PSNGR CAR W $\quad 000$

01	DRVR	INJA	53	M	ExP
					N-RES
02	PSNG	INJB	47	F	
03	PSNG	InJB	15	F	
04	PSNG	InJB	06	M	

02 None 0 StRght
PRVTE S N
$\begin{array}{llllll}\text { PSNGR CAR } & 01 \text { DRVR INJA } & 42 \text { F EXP } & 028 & 015 \\ 000\end{array}$
oR<25
$\begin{array}{llllllllll}\text { INTER } & \text { CROSS } & \text { N } & \text { N CLR } & \text { O-1 L-TURN } 01 & \text { NONE } & 0 & \text { STRGHT } \\ \text { CN } & & \text { UNKNOWN } & \text { N } & \text { DRY } & \text { TURN } & \text { PRVTE } & \text { E } & \text { W }\end{array}$
psNGR CAR
01 DRVR NONE 26 F OR-Y
OR>25

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
TRANSPORTATION DATA SECTION - CRASH ANALYSIS A
CONTINUOUS SYSTEM CRASH LISTING
Fern Ridge Rd \& OR 22 North Santiam Hwy (162)
January 1, 2011 through December 31, 2015
PAGE: 1
01 DRVR INJA 78 F OR-Y 028
02
00
02 OR<25
,

000
000 087
087

$000 \quad 087$

Fern Ridge Rd \& OR 22 North Santiam Hwy (162)

	S	D					
		R	S W			County	ROADS
SER\#	E A	U	C 0	date	MILEPNT	FIRST	Street
Invest	E L	G	H R	DAY/TIME	DIST FROM	SECOND	Street

VEHICLE TYPE CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
00	PDO	NOT COLLECTED FOR PDO CRASHES
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE

weather condition code translation list

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	CLR	CLEAR
2	CLD	CLOUDY
3	RAIN	RAIN
4	SLT	SLEET
5	FOG	FOG
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE
OR 22 North Santiam Hwy (162) \& Old Mehama Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{gathered} \text { PEOPLE } \\ \text { KILLED } \end{gathered}$	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
ANGLE	0	1	0	1	0	1	0	0	1	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0
YEAR: 2011														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
2011 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
FINAL TOTAL	0	1	1	2	0	1	0	0	2	1	1	2	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.
 \section*{62 NORTH SANTIAM}
 \section*{62 NORTH SANTIAM}

REPORTING UNTI ontinuous System crash Listing
January 1, 2011 through December 31, 2015

	$\begin{array}{llll} \text { S } & \text { D } & \\ P & R & \text { S } \end{array}$						
SER\#	eauc o date					COUNTY CITY	
INVEST	E L G H R DAY/TIME D C S L K LAT/LONG						
UNLOC?							RBAN
00162	n Y N N N 01/17/2011					MARION	
State				Mon	6 P		
No	4448			$4.46-122$		4459.28	
04434	NNNN $12 / 10 / 2014$					MARION	
State				Wed	2 P		

MILEPNT SECOND STREE
RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM PRTC INJ G G E LICNS PED
$\begin{array}{lrllllllllll}1 & 02 & \text { INTER } & 3-\text { LEG } & \text { N } & \text { N CLD } & \text { O-1 } & \text { L-TURN } & 01 & \text { NONE } & 0 & \text { TURN-L } \\ \text { MN } & 0 & \text { CN } & & & \text { UNKNOWN } & \text { N } & \text { WET } & \text { TURN } & \text { PRVTE } & \text { E } & \text { S }\end{array}$ n DLIT PDO
pSNGR CAR
01 DRVR NoN
39 F OR-OR-Y
OR <25

02 NONE 1 StRght
PSNGR CAR
01 DRVR NONE 51 M OR-Y
000

000
0
oR<25

01 DRVR TNJB 74 m or-y
03
00
pangr car
1 DRVR INJB 74 M OR-Y
000
000
00
00

02 NONE 0 STRGHT
PRVTE N S
01 DRVR NONE 86 M OR-Y
021
000
00

ACTION CODE TRANSLATION LIST

CODE	DESCRIPTION	ONG DESCRIPTION
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SKIDDED
002	ON/OFF V	GEtting On OR Off Stopped or Parked vehicle
003	LOAD OVR	OVERHANGING LOAD Struck another vehicle, etc.
006	SLOW DN	SLOWED DOWN
007	AVOIDING	AVOIDING MANEUVER
008	PAR PARK	PARALLEL PARKIng
009	ANG PARK	Angle Parking
010	INTERFERE	PASSENGER INTERFERING WITH DRIVER
011	STOPPED	Stopped in traffic not Waiting to make a left turn
012	STP/L TRN	Stopped because of left turn signal or waiting, etc.
013	STP TURN	Stopped while executing A turn
014	EMR V PKD	Emergency vehicle legally Parked in the roadway
015	GO A/Stop	PROCEED AFTER STOPping For A Stop Sign/flashing Red.
016	TRN A/RED	TURNED ON RED AFTER STOPPING
017	LOSTCTRL	LOST CONTROL OF VEhICLE
018	EXIT DWY	ENTERING STREET OR HIGHWAY FROM ALLEY OR DRIVEWAY
019	ENTR DWY	ENTERING ALLEY OR DRIVEWAY FROM StREET OR HIGHWAY
020	STR ENTR	before entering roadway, Struck pedestrian, etc. on Sidewalk or Shoulder
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	Struck, OR WAS Struck by, Vehicle or pedestrian in prior collision before acc. Stabilized
023	StALLED	VEHICLE StALLED OR DISABLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FATIGUE	FATIGUED, SLEEPY, ASLEEP
026	SUN	DRIVER BLINDED BY SUN
027	HDLGHTS	DRIVER BLINDED BY HEADLIGHTS
028	ILLNESS	PHYSICALLY ILL
029	thru med	VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATtempting to Stop a vehicle
031	PASSING	PASSING SITUATION
032	PRKOFFRD	VEHICLE PARKED BEYOND CURB OR SHOULDER
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	X $\mathrm{N} / \mathrm{SGNL}$	CROSSING AT Intersection - no traffic signal present
035	X W/ SGNL	CROSSING AT Intersection - traffic signal present
036	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S Attention distracted
039	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON Shoulder with traffic
040	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
041	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
042	A/traf-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
043	PLAYINRD	PLAying in Street or road
044	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
045	WORK ON	WORKING IN ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WIth traffic
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC
050	LAY ON RD	Standing or Lying in roadway
051	ENT Offrd	Entering / Starting in traffic lane from off road
052	MERGING	MERGING
055	SPRAY	BLINDED BY WATER SPRAY

ACTION CODE TRANSLATION LIST

ACTION DESCRIPTION LONG DESCRIPTION

088	OTHER	OTHER ACTION
099	UNK	UNKNOWN ACTION

CAUSE CODE TRANSLATION LIST

00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING
06	IMP-OVER	IMPROPER OVERTAKING
07	TOO-CLOS	FOLLOWED TOO CLOSELY
08	IMP-TURN	MADE IMPROPER TURN
09	DRINKING	ALCOHOL OR DRUG INVOLVED
10	OTHR-IMP	OTHER IMPROPER DRIVING
11	MECH-DEF	MECHANICAL DEFECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)
13	IMP LNC	IMPROPER CHANGE OF TRAFFIC LANES
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED ROi
16	FATIGUE	DRIVER DROWSY/FATIGUED/SLEEPY
17	ILLNESS	PHYSICAL ILLNESS
18	IN RDWY	NON-MOTORIST ILLEGALLY IN ROADWAY
19	NT VISBL	NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN
20	IMP PKNG	VEHICLE IMPROPERLY PARKED
21	DEF STER	DEEECTIVE STEERING MECHANISM
22	DEF BRRE	INADEQUATE OR NO BRAKES
24	LOADSHET	VEHICLE LOST LOAD OR LOAD SHIFTED
25	TIREFAIL	TIRE FAILURE
26	PHANTOM	PHANTOM / NON-CONTACT VEHICLE
27	INATTENT	INATTENTION
28	NM INATT	NON-MOTORIST INATTENTION
29	FAVOID	FAILED TO AVOID VEHICLE AHEAD
30	SPEED	DRIVING IN EXCESS OF POSTED SPEED
31	RACING	SPEED RACING (PER PAR)
32	CARELESS	CARELESS DRIVING (PER PAR)
33	RECKLESS	RECKLESS DRIVING (PER PAR)
34	AGGRESV	AGGRESSIVE DRIVING (PER PAR)
35	RD RAGE	ROAD RAGE (PER PAR)
40	VIEW OBS	VIEW OBSCURED
50	USED MDN	IMPROPER USE OF MEDIAN OR SHOULDER
51	FAIL LN	FAILED TO MAINTAIN LANE
52	OFF RD	RAN OFF ROAD

COLLISION TYPE CODE TRANSLATION LIST

COLL SHORT
 CODE DESCRIPTION LONG DESCRIPTION

$\&$	OTH	MISCELLANEOUS
-	BACK	BACKING
0	PED	PEDESTRIAN
1	ANGL	ANGLE
2	HEAD	HEAD-ON
3	REAR	REAR-END
4	SS-M	SIDESWIPE - MEETING
5	SS-O	SIDESWIPE - OVERTAKING
6	TURN	TURNING MOVEMENT
7	PARK	PARKING MANEUVER
8	NCOL	NON-COLLISION
9	FIX	FIXED OBJECT OR OTHER OBJECT

CRASH TYPE CODE TRANSLATION LIST

CRASH SHORT
TYPE DESCRIPTION LONG DESCRIPTION
\& OVERTURN OVERTURNED

0 NON-COLL OVERTURNED
1 OTH RDWY MOTOR VEHICLE ON OTHER ROADWAY
PRKD MV PARKED MOTOR VEHICLE
BIKE PEDALCYCLIST
ANIMAL ANIMAL
FIX OBJ FIXED OBJECT

OTH OBJ OTHER OBJECT
A ANGL-StP ENTERING AT ANGLE - ONE VEHICLE STOPPED
ANGL-OTH ENTERING AT ANGLE - ALL OTHERS
S-STRGHT FROM SAME DIRECTION - BOTH GOING STRAIGHT
S-1TURN FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT
S-1STOP FROM SAME DIRECTION - ONE STOPPED
S-OTHER FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING O-STRGTT FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARK O-1 L-TURN FROM OPPOSITE DIRECTION-ONE LEFT TURN,ONE STRAIGHT
O-1STOP FROM OPPOSITE DIRECTION - ONE STOPPED O-OTHER FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING

LIC	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NOT LICENSED (HAD NEVER BEEN LICENSED)
1	OR-Y	VALID OREGN LICENSE
2	OTH-Y	VALID LICENSE, OTHER STATE OR COUNTRY
3	SUSP	SUSPENDED/REVOKED
4	EXP	EXPIRED
8	N-VAL	OTHER NON-VALID LICENSE
9	UNK	UNKNOWN IF DRIVER WAS LICENSED AT TIME OF CRASH

RES	SHORT	
CODE	DESC	LONG DESCRIPTION
1	OR<25	OREGON RESIDENT WITHIN 25 MILE OF HOME
2	ORR25	OREGON RESIDENT 25 OR MORE MILES FROM HOME
3	OR-?	OREGON RESIDENT - UNKNOWN DISTANCE FROM HOME
4	N-RES	NON-RESIDENT
9	UNK	UNKNOWN IF OREGON RESIDENT

ERROR CODE TRANSLATION LIST

ERROR	SHORT DESCRIPTION	FULL DESCRIPTION
000	NONE	No ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	Left turn in Front of oncoming traffic
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRNG	TURNED FROM WRONG LANE
007	TO WRONG	TURNED INTO WRONG LANE
008	ILLEG U	U-TURNED ILLEGALLY
009	IMP STOP	Improperly stopped in traffic lane
010	IMP SIG	ImPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	ImPROPERLY PARKED
013	UNPARK	Improper start leaving parked position
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHtS (VEHICLE IN TRAFFIC)
016	InAttent	INATTENTION (FAILURE TO DIM LIGHtS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	Oth PARK	ENTERING/EXITING PARKED POSITION W/ InSuFficient Clearance; Other improper parking maneuver
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	DISREGARDED TRAFFIC SIGNAL
021	RAN Stop	DISREGARDED Stop Sign or flashing Red
022	DIS SIGN	DISREGARDED WARning SIGn, flares or flashing amber
023	DIS OFCR	DISREGARDED POLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILed to Avoid stopped or parked vehicle ahead other than school bus
027	BIKE ROW	DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST
028	No Row	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILEd to yield Right-Of-WAy to pedestrian
030	PAS CURV	PASSING ON A CURVE
031	PAS WRNG	PASSING ON THE WRONG SIDE
032	PAS TANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X -WK	PASSED Vehicle stopped at crosswalk for pedestrian
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST OF HILL
036	N/PAS Zn	PASSING IN "NO PASSING" zone
037	PAS TRAF	PASSING In FRONT OF OnComing traffic
038	CUT-IN	CUTTING IN (TWO LANES - TWO WAY OnLy)
039	WRNGSIDE	DRIVING ON WRONG SIDE Of THE ROAD (2-WAY UNDIVIDED ROADWAYS)
040	thru med	DRIVING through safety zone or over island
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS

ERROR CODE TRANSLATION LIST

ERROR SHORT

CODE DESCRIPTION FULL DESCRIPTION

042	F/SLO MV	FAiled to decrease speed for Slower moving vehicle
043	too Close	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	STRADDLING OR DRIVING ON WRONG LANES
045	IMP Chg	IMPROPER CHANGE OF TRAFFIC LANES
046	WRNG WAY	WRONG WAY On ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	IMPEDING	IMPEDING TRAFFIC
050	SPEED	driving in excess of posted speed
051	Reckless	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACING	SPEED RACING (PER PAR)
054	$\mathrm{X} \mathrm{N} / \mathrm{SGNL}$	CROSSING AT Intersection, no traffic Signal present
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
061	W/TRAF-P	WALKING, RUNNING, RIdING, ETC., ON PAVEMENT WITH TRAFFIC
062	A/TRAF-P	WALKIng, Running, RIding, etc., on PAVEMENT FACIng traffic
063	PLAYINRD	PLAYing in Street or road
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WORK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAY ON RD	Standing OR LYING In Roadway
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	ELUDING	ELUDING / Attempt to elude
079	F NEG CURV	FAILED TO NEGOTIATE A CURVE
080	FAIL LN	FAiled to maintain lane
081	OFF RD	RAN OFF ROAD
082	No CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOAdING OF VEHICLE WIth CARGO OR PASSENGERS
097	UNA DIS TC	UNABLE TO Determine which driver disregarded traffic control device

CODE	DESCRIPTION	LONG DESCRIPTION
001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE
002	INTERFER	PASSENGER INTERFERED WITH DRIVER
003	BUG INTF	ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHIKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	on/ofe V	GEtting On/OFF Stopped/parked vehicle (OCCUPANTS Only; must have physical contact w/ vehic
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT
011	MV PUSHD	vehicle being pushed
012	MV TOWED	VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE
013	FORCED	VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN
014	SET MOTN	VEHICLE SEt In motion by non-driver (Child Released brakes, etc.)
015	RR ROW	AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)
016	LT RL Row	AT OR ON LIGHT-RAIL RIGHT-OF-WAY
017	RR HIT V	train struck vehicle
018	V HIT RR	vehicle struck train
019	HIT RR CAR	VEHICLE StRUCK RAILROAD CAR ON ROADWA
020	JACKNIFE	JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE
021	TRL OtRn	TRAILER OR TOWED VEHICLE OVERTURNED
022	CN BROKE	TRAILER CONNECTION BROKE
023	DEtACH TRL	DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT
024	V DOOR OPN	VEHICLE DOOR OPENED Into AdJacent traffic lane
025	WHEELOFF	WHEEL CAME OFF
026	HOOD UP	HOOD FLEW UP
028	LOAD SHIFT	LOST LOAD, LOAD MOVED OR SHIf
029	TIREFAIL	TIRE FAILURE
030	PET	PEt: CAT, DOG AND SIMILAR
031	LVSTOCK	STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.
032	HORSE	HORSE, MULE, OR DONKEY
033	HRSE\&RID	HORSE AND RIDER
034	GAME	WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)
035	DEER ELK	DEER OR ELK, WAPITI
036	ANML VEH	ANIMAL-DRAWN VEHICLE
037	CULVERT	CULVERT, OPEN LOW OR HIGH MANHOLE
038	ATENUATN	IMPACT ATTENUATOR
039	PK METER	PARKING METER
040	CURB	CURB (ALSO NARROW SIDEWALKS ON BRIDGES)
041	JIGGLE	JIGGLe Bar or traffic snake for channelization
042	GDRL END	LeAding edge of guardrail
043	GARDRAIL	GUARD RAIL (NOT METAL MEDIAN BARRIER)
044	BARRIER	MEDIAN BARRIER (RAISED OR METAL)
045	WALL	RETAINING WALL OR TUNNEL WALL
046	BR RAIL	BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)
047	BR ABUTMNT	BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)
048	BR COLMN	BRIDGE PILLAR OR COLUMN
049	BR GIRDR	BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)
050	ISLAND	TRAFFIC RAISED ISLAND
051	GORE	GORE
052	POLE UNK	POLE - TYPE UNKNOWN
053	POLE UTL	POLE - POWER OR TELEPHONE
054	ST LIGHT	POLE - StReet light only
055	TRF SGNL	POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY
056	SGN BRDG	POLE - SIGN BRIDGE
057	STOPSIGN	STOP OR YIELD SIGN
058	OTH SIGN	OTHER SIGN, INCLUDING STREET SIGNS
059	HYDRANT	HYDRANT

$\begin{aligned} & \text { EVENT } \\ & \text { CODE } \end{aligned}$	DESCRIPTION	LONG DESCRIPTION
060	MARKER	DELINEATOR OR MARKER (REFLECTOR POSTS)
061	MAILBOX	MAILBOX
062	TREE	TREE, StUMP OR SHRUBS
063	veg OHED	TREE BRANCH OR OTHER VEGETATION OVERHEAD, ETC.
064	WIRE/CBL	WIRE OR CABLE ACROSS OR OVER THE ROAD
065	TEMP SGN	TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.
066	PERM SGN	PERMANENT SIGN OR BARRICADE IN/OFF ROAD
067	SLIDE	SLIDES, FALLEN OR FALLING ROCKS
068	FRGN OBJ	FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)
069	EQP WORK	EQUIPMENT WORKING IN/OFF ROAD
070	OTH EQP	OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)
071	MAIN EQP	WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT
072	OTHER WALL	ROCK, BRICK OR OTHER SOLID WALL
073	IRRGL PVMT	OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE
075	CAVE IN	BRIDGE OR ROAD CAVE IN
076	HI WATER	HIGH WATER
077	SNO BANK	SNOW BANK
078	LO-HI EDGE	LOW OR HIGH SHOULDER AT PAVEMENT EDGE
079	DITCH	CUT SLOPE OR DITCH EMBANKMENT
080	OBJ FRM MV	STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)
081	FLY-OBJ	STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)
082	VEH HID	Vehicle obscured view
083	VEG HID	VEGETATION OBSCURED VIEW
084	BLDG HID	view obscured by fence, Sign, phone booth, etc.
085	WIND GUST	WIND GUST
086	IMMERSED	Vehicle Immersed in body of water
087	FIRE/EXP	FIRE OR EXPLOSION
088	FENC/BLD	FENCE OR BUILDING, ETC.
089	OTHR CRASH	CRASH RELATED TO ANOTHER SEPARATE CRASH
090	TO 1 SIDE	TWO-WAY traffic on divided roadway all routed to one side
091	BuILDING	BUILDING OR OTHER STRUCTURE
092	PHANTOM	OTHER (PHANTOM) NON-CONTACT VEHICLE
093	CELL PHONE	CELL PHONE (ON PAR OR DRIVER IN USE)
094	VIOL GDL	teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE
096	BERM	BERM (EARTHEN OR GRAVEL MOUND)
097	GRAVEL	GRAVEL IN ROADWAY
098	ABR EDGE	ABRUPT EDGE
099	CELL WTNSD	CELL Phone use witnessed by other participant
100	UNK FIXD	FIXED OBJECT, UNKNOWN TYPE.
101	OTHER OBJ	NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE
102	TEXtING	TEXTING
103	WZ WORKER	WORK ZONE WORKER
104	ON VEhicle	PASSENGER RIDING ON VEHICLE EXTERIOR
105	PEDAL PSGR	PASSENGER RIDING ON PEDALCYCLE
106	MAN WHLCHR	PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR
107	MTR WHLCHR	PEDESTRIAN IN MOTORIZED WHEELCHAIR
108	OFFICER	LAW ENFORCEMENT / POLICE OFFICER
109	SUB-BIKE	"SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.
110	N-MTR	NON-MOTORIST STRUCK VEHICLE
111	S CAR vS V	Street Car/trolley (on Rails or overhead wire system) Struck vehicle
112	v VS S CAR	Vehicle struck street car/trolley (on Rails or overhead wire system)
113	S CAR ROW	AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY
114	RR EQUIP	VEHICLE Struck Railroad equipment (not train) on tracks
115	DSTRCT GPS	DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE
116	DSTRCT OTH	DISTRACTED BY OTHER ELECTRONIC DEVICE
117	RR GATE	RAIL CROSSING DROP-ARM GATE

CODE	DESCRIPTION	LONG DESCRIPTION
118	EXPNSN JNT	EXPANSION JOINT
119	JERSEY BAR	JERSEY BARRIER
120	WIRE BAR	WIRE OR CABLE MEDIAN BARRIER
121	FENCE	FENCE
123	OBJ IN VEH	LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT
124	SLIPPERY	SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)
125	SHLDR	SHOULDER GAVE WAY
126	BULDER	ROCK (S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)
127	LAND SLIDE	ROCK SLIDE OR LAND SLIDE
128	CURVE INV	CURVE PRESENT AT CRASH LOCATION
129	HILL INV	VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION
130	CUVVE HID	VIEW OBSCURED BY CURE
131	HILL HID	VIEW OBSCURED BY VERTICAL GRADE / HILL
132	WINDOW HID	VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS
133	SPRAY HID	VIEW OBSCURED BY WATR SPRAY
134	TORRENTIAL	TORRENTIAL RAIN (EXCEPTIONALLY HEAVY RAIN)

FUNC
 CLASS DESCRIPTION

01 RURAL PRINCIPAL ARTERIAL - INTERSTATE
RURAL PRINCIPAL ARTERIAL - OTHER
RURAL MINOR ARTERIAL
RURAL MAJOR COLLECTOR
RURAL MINOR COLLECTOR
RURAL LOCAL
URBAN PRINCIPAL ARTERIAL - INTERSTATE
URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
URBAN PRINCIPAL ARTERIAL - OTHER
URBAN MINOR ARTERIAL
URBAN MAJOR COLLECTOR
URBAN MINOR COLLECTOR
URBAN LOCAL
unknown RuRAL SYSTEM
UNKNOWN RURAL NON-SYSTEM
UnkNown URBAN SYSTEM
unknown urban non-system

INJURY SEVERITY CODE TRANSLATION LIST

SHORT

CODE	SHORT DESC	LONG DESCRIPTION
1	KILL	FATAL INJURY
2	INJA	INCAPACITATING INJURY - BLEEDING, BROKEN BONES
3	INJB	NON-INCAPACITATING INJURY
4	INJC	POSSIBLE INJURY - COMPLAINT OF PAIN
5	PRI	DIED PRIOR TO CRASH
7	NO 55	NO INJURY - TO 4 YEARS OF AGE
9	NONE	PARTICIPANT UNINJURED, OVER THE AGE OF 4

median type Code translation lis

| | SHORT
 CODE | DESC |
| :---: | :--- | :--- | LONG DESCRIPTION \quad.

MILEAGE TYPE CODE TRANSLATION LIS

CODE	LONG DESCRIPTION
0	REGULAR MILEAGE
T	TEMPORARY
Y	SPUR
Z	OVERLAPPING

MOVEMENT TYPE CODE TRANSLATION LIST
SHORT

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TURNING LEFT
4	U-TURN	MAKING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPERLY
9	PARKNG	PARKING MANEUVER

NON-MOTORIST LOCATION CODE TRANSLATION LIST

CODE LONG DESCRIPTION

00 AT INTERSECTION - NOT IN ROADWAY

02 AT INTERSECTION - INSIDE CROSSWALK
03 AT INTERSECTION - IN ROADWAY, OUTISIDE - IN ROADWAY, XWALK AVAIL UNKNWN
4 NOT AT INTERSECTION - IN ROADWAY
05 NOT AT INTERSECTION - ON SHOULDER
07 NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY
NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY
08 NOT AT INTERSECTION - IN BIKE PATH OR PARKING LANE
$\begin{array}{ll}08 \\ 09 & \text { NOT AT } \\ \text { NOT-AT INTERSECTION - IN BIKE PATH } \\ \text { INTERSETION - ON SIDEWALK }\end{array}$
10 OUTSIDE TRAFFICWAY BOUNDARIES
13 AT INTERSECTION - IN BIKE LANE
14 NOT AT INTERSECTION - IN BIKE LANE
15 NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK
16 NOT AT INTERSECTION - IN PARKING LANE
18 OTHER, NOT IN ROADWAY
99 UNKNOWN LOCATION

ROAD CHARACTER CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	INTER	INTERSECTION
2	ALLEY	DRIVEWAY OR ALLEY
3	STRGHT	STRAIGHT ROADWAY
4	TRANS	TRANSITION
5	CURVE	CURVE (HORIZONTAL CURVE)
6	OPENAC	OPEN ACCESS OR TURNOUT
7	GRADE	GRADE (VERTICAL CURVE)
8	BRIDGE	BRIDGE STRUCTURE
9	TUNNEL	TUNNEL

PARTICIPANT TYPE CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	OCC	UNKNOWN OCCUPANT TYPE
1	DRVR	DRIVER
2	PSNG	PASSENGER
3	PED	PEDESTRIAN
4	CONV	PEDESTRIAN USING A PEDESTRIAN CONVEYA
5	PTOW	PEDESTRIN TOWING OR TRAILERING AN OB.
6	BIKE	PEDALCYCLIST
7	BTOW	PEDALCYCLIST TOWING OR TRAILERING AN
8	PRKD	OCCUPANT OF A PARKED MOTOR VEHICLE
9	UNK	UNKNOWN TYPE OF NON-MOTORIST

TRAFETC CONTROL DEVICE CODE TRANSLATION ITS

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRF SIGNAL	TRAFFIC SIGNALS
002	FLASHBCN-R	FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCRFLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDGGATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATION
017	MEDIAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGNG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	SPECIAL RR STOP SIGN
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING
095	BUS STPSGN	BUS STOP SIGN AND RED LIGHTS
099	UNKNOWN	UNKNOWN OR NOT DEFINITE

CODE	SHORT DESC	LONG DESCRIPTION
00	PDO	NOT COLLECTED FOR PDO CRASHES
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE

WEATHER CONDITION CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	CLR	CLEAR
2	CLD	CLOUDY
3	RAIN	RAIN
4	SLT	SLEET
5	FOG	FOG
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

Appendix E Population and Employment Forecast

POPULATION AND EMPLOYMENT FORECAST

Date: August 2, 2018
To: Lance Ludwick and Dan Fleishman (City of Stayton)
From: Andrew Parish and Darci Rudzinski (Angelo Planning Group)

Subject: Stayton Population and Employment Projections

TABLE OF CONTENTS

Table of Contents ... 1
Purpose and Introduction .. 1
Population Forecast .. 1
Employment Forecast ... 6
Attachment: Upcoming potential housing developments in Stayton, OR

PURPOSE AND INTRODUCTION

This memorandum documents the methodology and results of the population and employment forecasts conducted as part of the City of Stayton Transportation System Plan (TSP) Update. The methodology and assumptions included in this memorandum are based on guidance provided in the Oregon Department of Transportation (ODOT) Transportation System Plan Guidelines (Reference 1) and direction provided by City staff.

POPULATION FORECAST

These forecasts apply previously-conducted studies to Transportation Analysis Zones (TAZs) within the City of Stayton, based on a number of factors. Data sources include:

- Portland State University (PSU) Population Research Center (PRC) coordinated population forecasts for Marion County
- US Census 2000 and 2010 figures at the block level
- "On The Map"l economic census data for the Stayton area

[^4]
POPULATION FORECAST METHODOLOGY

Population totals for the Stayton urban growth boundary (UGB) for the base year (2017) and plan year (2040) are established in the Population Research Center (PRC) Coordinated Population Forecast for Marion County (2017 Through 2067). For the Stayton TSP, this overall population needs to be across 27 TAZs within the Stayton UGB.

Figure 1. Stayton TSP Transportation Analysis Zones

Table 1 is an excerpt of the PRC forecast for Marion County. The 2017 population of the City of Stayton is 8,138 , and the 2040 total is projected to be 9,767 , a difference of 1,629 individuals (or a growth of 20% over the planning horizon). The number of persons per household (PPH) within the City of Stayton was 2.6 in 2010 and is assumed to remain at that level, resulting in the need for an additional 627 homes by 2040. If the occupancy rate remains at 95%, an additional 31 units are needed, totaling 658 units.

Table 1. Portland State University PRC Forecast for Marion County and Larger Sub Areas - Forecast Population and AAGR

	2017	2035	2067	$\begin{gathered} \text { AAGR } \\ (2017-2035) \end{gathered}$	$\begin{gathered} \text { AAGR } \\ (2035-2067) \end{gathered}$	Share of County 2017	Share of County 2035	Share of County 2067
Marion County	337,773	405,352	513,142	1.0\%	0.7\%	100.0\%	100.0\%	100.0\%
Salem/Keizer UGB (Marion)	218,689	266,626	353,218	1.1\%	0.9\%	64.7\%	65.8\%	68.8\%
Silverton UGB	10,214	13,076	16,889	1.4\%	0.8\%	3.0\%	3.2\%	3.3\%
Stayton UGB	8,138	9,432	11,841	0.8\%	0.7\%	2.4\%	2.3\%	2.3\%
Woodburn UGB	26,211	34,187	46,262	1.5\%	0.9\%	7.8\%	8.4\%	9.0\%
Smaller UGBs	25,934	33,175	40,912	1.4\%	0.7\%	7.7\%	8.2\%	8.0\%
Outside UGBs	48,587	48,857	44,020	0.0\%	-0.3\%	14.4\%	12.1\%	8.6\%

Source: Forecast by Population Research Center (PRC)
Note: Smaller UGBs are those with populations less than 7,000 in forecast launch year.
Block-level census data from the 2010 decennial census count was used to determine the base year distribution of people and households in each TAZ, as shown in Table 2. The proportion of the 2010 population within a given TAZ is assumed to be the same as the 2017 (base year) proportion of the population.

In order to determine the likely location of future residential growth within the City of Stayton, City planning staff provided information regarding vacant buildable lands within the current City limits and land within the UGB, which includes land outside the current City limits. Information regarding approved and potential residential developments was also factored into assumptions.

There has been demonstrated interest from property owners in areas outside the current City limits to develop residential subdivisions. Given clear property owner interest and the developability of the subject sites, this analysis assumes these locations should be included in future growth assumptions. Approved and potential residential projects include the following:

Approved Projects:

- Lambert Place, 50 units in final engineering in TAZ 3
- Wildlife Meadows, 45 new units in TAZ 13

Potential Projects:

- Pine Ridge, up to 263 new homes outside the current City Limits in TAZ 19
- Santiam Subdivision, up to 243 SF homes and 45 multifamily units in TAZ 27

Additional information about these projects, such as location and site plans, are provided in the attachment to this memorandum.

These projects make up a total of 646 planned units within the Stayton UGB, roughly matching the amount of growth projected by the PRC forecast.

Table 2. Base Year Population and Households
\(\left.$$
\begin{array}{rrrr}\text { Percent of } \\
\text { 2010 } \\
\text { Households }\end{array}
$$ \quad $$
\begin{array}{c}\text { Base Year } \\
\text { Population }\end{array}
$$ \begin{array}{c}Hase year

(2.6 Persons per

Household)\end{array}\right]\)| 1 | 1% | 106 |
| ---: | ---: | ---: |
| 2 | 0% | 39 |

Source: 2010 Decennial Census, PSU Population Research Center

POPULATION FORECAST RESULTS

Table 3 shows identified projects added to base-year TAZ households, resulting in the projected future-year housing units by TAZ.

Table 3. Base Year and Future Year Households by TAZ

TAZ	Base Year (2017) HH	Identified Growth	$\begin{aligned} & \text { Future } \\ & \text { Year } \\ & (2040) \mathrm{HH} \end{aligned}$
1	41		41
2	15		15
3	192	50	242
4	1		1
5	0		0
6	272		272
7	0		0
8	78		78
9	58		58
10	128		128
11	546		546
12	259		259
13	5	45	50
14	62		62
15	214		214
16	1		1
17	45		45
18	6		6
19	2	263	265
20	184		184
21	103		103
22	371		371
23	89		89
24	118		118
25	87		87
26	31		31
27	223	288	511
Grand Total	3130	646	3776

EMPLOYMENT FORECAST

Employment is another important input into transportation modeling for the Stayton TSP Update. The number of expected employees is translated into the future need for square footage of various types of employment uses.

EMPLOYMENT FORECAST METHODOLOGY

Employment data for the City of Stayton is available through the US Census Bureau's Center for Economic Studies "On The Map" tool. Available data shows a steady decline in jobs within the City of Stayton since 2005 (Figure 2). This matches the observations of City staff, who noted the departure of manufacturing jobs over this time period.

Figure 2. Stayton Job Growth, 2005-2015

Census data provides the number of jobs per census block broken into North American Industry Classification System (NAICS) sector. Overall employment for the City is shown in Figure 3.

Figure 3. Job Locations within Stayton

Jobs

- 1
- 10
- 50
(D) $\mathbf{1 0 0}$

The State of Oregon publishes employment projections for various regions throughout the state. The latest Mid-Valley Industry Employment Projections for the Linn, Marion, Polk, and Yamhill County area projects a 12% growth of employment overall within these counties, or an average annual growth rate of 1.2%. Projected growth rates vary
considerably between NAICS sectors, with the greatest growth occurring in manufacturing and health care jobs.

Table 4. State of Oregon Employment Forecast

Industry Employment Forecast, 2017-2027 Linn, Marion, Polk, and Yamhill Counties

				\%
Total Employment	$\mathbf{2 0 1 7}$	$\mathbf{2 0 2 7}$	Change	Change
Total payroll employment	261,000	292,000	31,100	$\mathbf{3 2 \%}$
Total private	208,800	236,400	27,600	12%
Natural resources and mining	17,700	20,100	2,400	14%
Mining and logging	1,200	1,300	100	8%
Construction	14,700	17,700	3,000	20%
Manufacturing	27,700	30,100	2,400	9%
Durable goods	16,300	17,700	1,400	9%
Wood product manufacturing	4,200	4,100	-100	-2%
Nondurable goods	11,400	12,400	1,000	9%
Food manufacturing	6,300	6,700	400	6%
Trade, transportation, and utilities	42,500	47,600	5,100	12%
Wholesale trade	6,200	6,900	700	11%
Retail trade	27,800	30,200	2,400	9%
Transportation, warehousing, and utilities	8,500	10,500	2,000	24%
Information	1,800	1,900	100	6%
Financial activities	9,200	9,700	500	5%
Professional and business services	19,000	21,000	2,000	11%
Administrative and support services	9,800	10,800	1,000	10%
Private educational and health services	43,700	51,800	8,100	19%
Health care and social assistance	35,300	42,500	7,200	20%
Health care	28,100	34,400	6,300	22%
Leisure and hospitality	22,400	25,400	3,000	13%
Accommodation and food services	19,900	22,600	2,700	14%
Accommodation	1,600	1,800	200	13%
Other services and private households	10,100	11,100	1,000	10%
Government	52,200	55,700	3,500	7%
Federal government	2,100	2,100	0	0%
Federal government post office	800	700	-100	-13%
State government	21,900	23,900	2,000	9%
State education	100	100	0	0%
Local government	28,200	29,700	1,500	5%
Local education	16,000	16,900	900	6%
Self-employment	16,200	18,500	2,300	14%

Contact: Pat O'Connor, Regional Economist, Patrick.S.Oconnor@oregon.gov, 503-400-4374
Published June 26, 2018

The following tables apply the State's growth forecast to employment in the TAZs defined for the TSP update, and translates those employment figures to the amount of commercial and industrial building space needed using standard ratios of square feet per employee from the Urban Land Institute.

One specific adjustment was made to this projection, which is otherwise a linear continuation of existing trends, to accommodate a specific employment opportunity site. The projection assumes that 50% of the growth in Manufacturing and Transportation/Warehouse/Utility jobs will be located in TAZ 4, where a large vacant industrial property is located.

Table 5. Employment Space Utilization

	Commercial		Industrial										
			Industrial Type				Square Feet per Job			Avg Space per Job			
	Commercial Office Share	Avg Office Space per Employee	Industrial Share	Warehouse	Gen Ind	Tech/ Flex	Warehouse	Gen Ind	Tech/ Flex	Warehouse	Gen Ind	Tech/ Flex	Weighted Avg
Construction	2\%	366	30\%	0\%	75\%	25\%	1350	533	467	0	400	117	517
Manufacturing	5\%	366	95\%	0\%	75\%	25\%	1350	533	467	0	400	117	517
Wholesale Trade	5\%	366	95\%	90\%	0\%	10\%	1500	533	467	1350	0	47	1397
Retail Trade	5\%	366	0\%	0\%	0\%	0\%	1350	533	467	0	0	0	0
Transp. Warehouse. Util	30\%	366	70\%	100\%	0\%	0\%	1350	533	467	2000	0	0	2000
Information	90\%	366	10\%	0\%	0\%	100\%	2000	533	467	0	0	467	467
Financial Activities	90\%	366	0\%	0\%	0\%	0\%	1350	533	467	0	0	0	0
 Business Services	90\%	366	10\%	0\%	0\%	100\%	1350	533	467	0	0	467	467
Services	40\%	366	0\%	0\%	0\%	0\%	1350	533	467	0	0	0	0
Leisure \& Hosp	25\%	366	0\%	0\%	0\%	0\%	1350	533	467	0	0	0	0
Other Services	40\%	366	60\%	0\%	75\%	25\%	1350	533	467	0	400	117	517
Government	85\%	366	15\%	50\%	0\%	50\%	1350	533	467	675	0	234	909

Table 6. Jobs and Employment Square Footage by TAZ, Base Year and Future Year

TAZ	Base Year (2017) Jobs	2017 Commercial SF	$\begin{gathered} 2017 \\ \text { Industrial SF } \end{gathered}$	Future Year (2040) Jobs	2040 Commercial SF	2040 Industrial SF
1	22	2,451	Total	29	3,179	-
2	0	-	-	0	-	-
3	180	22,267	-	249	31,066	7,265
4	28	601	5,612	136	4,854	106,983
5	547	12,473	27,323	656	14,588	299,233
6	87	8,443	260,430	116	10,416	26,053
7	0	-	19,738	0	-	-
8	142	26,747	-	179	32,311	24,608
9	27	2,409	18,004	34	3,044	364
10	207	9,574	286	305	12,879	82,722
11	193	9,931	58,404	239	12,674	46,408
12	340	31,123	38,841	450	41,616	47,240
13	0	-	36,360	0	-	-
14	78	5,840	-	105	8,492	-
15	26	3,621	-	37	5,163	14,381
16	0	-	9,347	0	-	-
17	2	666	-	2	758	-
18	0	-	-	0	-	-
19	0	-	-	0	-	-
20	325	16,135	-	381	19,616	127,499
21	172	32,818	114,138	221	39,539	9,546
22	662	95,457	7,174	962	138,081	24,980
23	4	456	18,488	5	574	1,448
24	7	711	1,111	11	917	1,406
25	2	15	903	3	24	514
26	3	345	323	5	589	7,512
27	6	329	4,400	9	423	1,822
Total	3,060	282,410	622,159	4,135	380,802	829,986

Attachment:

Upcoming potential housing developments in Stayton, OR

Wildlife Meadows Subdivision

44 Lots - four designated for duplexes
currently 24 homes
built or under construction

Appendix F Trip Generation and Origin-Destination Tables

Appendix F - Trip Generation and Origin-Destination Tables

SFD (ITE 110)		MF (ITE 220)			
Total	In	Out	Total	In	Out
0	0	0	0	0	0
0	0	0	0	0	0
50	31	18	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
41	26	15	2	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
260	164	96	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
241	152	89	25	16	9
0	0	0	0	0	0
591	372	219	27	17	10

Office (ITE 710)			Hospital (ITE 610)			High Turnover Sit-			Gen. Industrial (ITE			Warehouse (ITE			Retail (ITE 820)			Total		
Total	In	Out																		
0	0	0	0	0	0	6	4	2	0	0	0	0	0	0	0	0	0	6	4	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	2	5	1	3	20	12	8	1	0	1	0	0	0	0	0	0	79	46	32
0	0	0	0	0	0	0	0	0	29	4	26	7	2	5	0	0	0	36	6	31
0	0	0	0	0	0	0	0	0	21	3	18	2	0	1	0	0	0	22	3	19
2	1	2	1	0	0	1	1	0	4	0	3	0	0	0	0	0	0	8	2	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3	5	0	0	0	16	10	6	1	0	0	1	0	1	0	0	0	26	13	13
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
1	0	1	0	0	0	11	7	4	8	1	7	3	1	2	0	0	0	22	9	13
1	0	1	1	0	1	3	2	1	5	1	4	0	0	0	1	1	1	12	4	8
1	0	1	8	3	6	7	4	2	7	1	6	0	0	0	2	1	1	25	9	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43	27	16
0	0	0	2	1	1	2	1	1	0	0	0	0	0	0	1	0	0	5	2	3
0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	2	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	260	164	96
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	0	0	11	7	4	9	1	8	0	0	0	0	0	0	23	9	14
6	2	4	3	1	2	7	4	3	1	0	1	0	0	0	0	0	0	17	7	10
8	2	5	36	12	25	9	6	3	2	0	2	0	0	0	1	0	0	56	20	36
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	266	168	99
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																		911	495	416

ternal-External Trip Distribution
eadway nal Station New I-E Trip
$\begin{array}{ll}\text { OR 22 } & \text { A } \\ \text { OR 22 } & \text { B }\end{array}$

Internal Trip Attractions and Productions Probabilities

Zone	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26		
Total New Trips	6	0	71	32	20	7	0	23	1	20	11	23	38	4	1	0	0	233	0	20	15	51	0	1	0	239	0	818
Trip Attractions	3	0	41	5	3	2	0	11	0	8	4	8	24	2	0	0	0	145	0	8	7	18	0	0	0	149	0	439
Atraction Probability	1\%	0\%	9\%	1\%	1\%	0\%	0\%	3\%	0\%	2\%	1\%	2\%	5\%	0\%	0\%	0\%	0\%	33\%	0\%	2\%	2\%	4\%	0\%	0\%	0\%	34\%	0\%	100\%
Trip Productions	2	0	29	27	18	5	0	12	1	12	7	15	14	2	1	0	0	88	0	12	9	33	0	0	0	90	0	380

$\frac{\text { Internal Trip Attribution Distribution }}{}$

Zone	I-1 Attraction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27 Total	
1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	3
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	41	0	0	4	0	0	0	0	1	0	1	0	1	2	0	0	0	0	14	0	1	1	2	0	0	0	14	0	41
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	5
5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	3
6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	2
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	11	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	0	0	0	0	0	0	0	4	0	11
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	8	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0	8
11	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	4
12	8	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0	8
13	24	0	0	2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	8	0	0	0	1	0	0	0	8	0	24
14	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	2
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	145	1	0	14	2	1	1	0	4	0	3	1	3	8	1	0	0	0	48	0	3	2	6	0	0	0	49	0	145
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	8	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	0	8
21	7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	7
22	18	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	6	0	0	0	1	0	0	0	6	0	18
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	149	1	0	14	2	1	1	0	4	0	3	1	3	8	1	0	0	0	49	0	3	2	6	0	0	0	50	0	
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	439	3	0	41	5	3	2	0	11	0	8	4	8	24	2	0	0	0	145	0	8	7	18	0	0	0	149	0	439

$\frac{\text { Internal Trip Production Distribution }}{\text { Zone }}$

Zone	I-I Production	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27 Tota	
1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	2
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	29	0	0	2	2	1	0	0	1	0	1	1	1	1	0	0	0	0	7	0	1	1	3	0	0	0	7	0	29
4	27	0	0	2	2	1	0	0	1	0	1	1	1	1	0	0	0	0	6	0	1	1	2	0	0	0	6	0	27
5	18	0	0	1	1	1	0	0	1	0	1	0	1	1	0	0	0	0	4	0	1	0	2	0	0	0	4	0	18
6	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	5
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	12	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0	0	3	0	12
9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
10	12	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0	0	3	0	12
11	7	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	2	0	7
12	15	0	0	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	3	0	0	0	1	0	0	0	3	0	15
13	14	0	0	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	3	0	0	0	1	0	0	0	3	0	14
14	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	2
15	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	88	1	0	7	6	4	1	0	3	0	3	2	3	3	1	0	0	0	20	0	3	2	8	0	0	0	21	0	88
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	12	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0	0	3	0	12
21	9	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	2	0	9
22	33	0	0	3	2	2	0	0	1	0	1	1	1	1	0	0	0	0	8	0	1	1	3	0	0	0	8	0	33
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	90	1	0	7	6	4	1	0	3	0	3	2	3	3	1	0	0	0	21	0	3	2	8	0	0	0	22	0	90
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	380	2	0	29	27	18	5	0	12	1	12	7	15	14	2	1	0	0	88	0	12	9	33	0	0	0	90	0	380

Appendix G 2040 PM Operations

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }_{1}$	$\hat{1}$		${ }^{7}$	$\hat{\beta}$		${ }^{4}$	$\hat{\beta}$	
Traffic Vol, veh/h	11	66	37	80	43	159	45	264	94	244	331	12
Future Vol, veh/h	11	66	37	80	43	159	45	264	94	244	331	12
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	0	3	0	7	0	3	0	5	2	1	3	17
Mumt Flow	12	74	42	90	48	179	51	297	106	274	372	13
Number of Lanes	0	1	0	1	1	0	1	1	0	1	1	

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	1	2	2
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	2	2	1	2
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	2	2	2	1
HCM Control Delay	15.3	16	33	26.4
HCM LOS	C	C	D	D

Lane	NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	10%	100%	0%	100%	0%
Vol Thru, \%	0%	74%	58%	0%	21%	0%	97%
Vol Right, \%	0%	26%	32%	0%	79%	0%	3%
Sign Control	Stop						
Traffic Vol by Lane	45	358	114	80	202	244	343
LT Vol	45	0	11	80	0	244	0
Through Vol	0	264	66	0	43	0	331
RT Vol	0	94	37	0	159	0	12
Lane Flow Rate	51	402	128	90	227	274	385
Geometry Grp	7	7	6	7	7	7	7
Degree of Util (X)	0.112	0.82	0.303	0.217	0.473	0.586	0.77
Departure Headway (Hd)	7.952	7.336	8.506	8.706	7.5	7.699	7.195
Convergence, Y/N	Yes						
Cap	450	491	421	412	479	469	501
Service Time	5.718	5.102	6.591	6.472	5.265	5.467	4.962
HCM Lane V/C Ratio	0.113	0.819	0.304	0.218	0.474	0.584	0.768
HCM Control Delay	11.7	35.7	15.3	13.9	16.9	20.9	30.3
HCM Lane LOS	B	E	C	B	C	C	D
HCM 95th-tile Q	0.4	7.9	1.3	0.8	2.5	3.7	6.8

Intersection
Intersection Delay, s/veh 13.6
Intersection LOS \quad B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\boldsymbol{\$}$			$\boldsymbol{\$}$			\uparrow	$\mathbf{~}$		\uparrow	$\mathbf{7}$
Traffic Vol, ven/h	84	76	40	5	95	79	26	117	5	61	230	68
Future Vol, veh/h	84	76	40	5	95	79	26	117	5	61	230	68
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, $\%$	10	5	5	0	1	3	4	3	0	3	2	7
Mvmt Flow	95	86	45	6	108	90	30	133	6	69	261	77
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	2	WB
Conflicting Approach Left	SB	NB	EB	1
Conflicting Lanes Left	2	2	1	EB
Conflicting Approach RighNB	SB	WB	1	
Conflicting Lanes Right	2	2	1	15.6
HCM Control Delay	13	11.7	12.1	C

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{7}$	T	$\mathbf{7}$
Traffic Vol, veh/h	41	143	160	54	65	49
Future Vol, veh/h	41	143	160	54	65	49
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	70	-	-	110	0	50
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	0	2	1	0	0	2
Mvmt Flow	50	174	195	66	79	60

Major/Minor	Minor2	Minor1				Major1			Major2				
Conflicting Flow All	810	794	333	840	802	353	341	0		353	0	0	
Stage 1	395	395	-	399	399	-	-	-	-	-	-	-	
Stage 2	415	399	-	441	403	-	-	-	-	-	-	-	
Critical Hdwy	7.16	6.54	6.2	7.1	6.7	6.2	4.1	-		4.1	-	-	
Critical Hdwy Stg 1	6.16	5.54	-	6.1	5.7	-	-	-		-	-	-	
Critical Hdwy Stg 2	6.16	5.54	-	6.1	5.7	-	-	-	-	-	-	-	
Follow-up Hdwy	3.554	4.036	3.3	3.5	4.18	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	294	318	713	287	298	695	1229	-		1217	-	-	
Stage 1	622	601	-	631	572	-	-	-	-	-	-	-	
Stage 2	607	599	-	599	570	-	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	-	
Mov Cap-1 Maneuver	270	304	712	237	285	695	1228	-	-	1217	-	-	
Mov Cap-2 Maneuver	270	304	-	237	285	-	-	-	-	-	-	-	
Stage 1	610	585	-	619	561	-	-	-	-	-	-	-	
Stage 2	568	588	-	510	555	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	14			14.7			0.3			0.7			
HCM LOS	B			B									
Minor Lane/Major Mvm		NBL	NBT	NBR	EBLn1	EBLn2	EBLn3	NBLn1	WBLn2	SBL	SBT	SBR	
Capacity (veh/h)		1228	-	-	270	304	712	249	695	1217	-	-	
HCM Lane V/C Ratio		0.019	-		0.066	0.093	0.082	0.075	0.037	0.026	-	-	
HCM Control Delay (s)		8	-		19.3	18	10.5	20.6	10.4	8	-	-	
HCM Lane LOS		A	-	-	C	C	B	C	B	A	-	-	
HCM 95th \%tile Q(veh)		0.1	-	-	0.2	0.3	0.3	0.2	0.1	0.1	-	-	

HCM 6th Signalized Intersection Summary
109: Cascade Hwy SE \& OR 22 EB Ramps

	4	\rightarrow	\checkmark	\checkmark			4	4	\%		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	T					F		${ }^{7}$	4	
Traffic Volume (veh/h)	53	1	389	0	0	0	0	546	58	48	340	0
Future Volume (veh/h)	53	1	389	0	0	0	0	546	58	48	340	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.98	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1723	1750	1723				0	1709	1709	1641	1723	0
Adj Flow Rate, veh/h	55	1	0				0	569	60	50	354	0
Peak Hour Factor	0.96	0.96	0.96				0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	2	0	2				0	3	3	8	2	0
Cap, veh/h	113	2					0	774	82	426	1177	0
Arrive On Green	0.07	0.07	0.00				0.00	0.51	0.51	0.06	0.68	0.00
Sat Flow, veh/h	1638	30	1460				0	1516	160	1563	1723	0
Grp Volume(v), veh/h	56	0	0				0	0	629	50	354	0
Grp Sat Flow(s),veh/h/ln	1668	0	1460				0	0	1676	1563	1723	0
Q Serve(g_s), s	1.3	0.0	0.0				0.0	0.0	12.1	0.5	3.4	0.0
Cycle Q Clear(g_c), s	1.3	0.0	0.0				0.0	0.0	12.1	0.5	3.4	0.0
Prop In Lane	0.98		1.00				0.00		0.10	1.00		0.00
Lane Grp Cap(c), veh/h	115	0					0	0	856	426	1177	0
V/C Ratio(X)	0.49	0.00					0.00	0.00	0.73	0.12	0.30	0.00
Avail Cap(c_a), veh/h	1215	0					0	0	1425	1085	1464	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	18.5	0.0	0.0				0.0	0.0	7.9	5.6	2.6	0.0
Incr Delay (d2), s/veh	2.4	0.0	0.0				0.0	0.0	2.4	0.1	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.5	0.0	0.0				0.0	0.0	2.6	0.0	0.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.8	0.0	0.0				0.0	0.0	10.3	5.7	2.9	0.0
LnGrp LOS	C	A					A	A	B	A	A	A
Approach Vol, veh/h		56	A					629			404	
Approach Delay, s/veh		20.8						10.3			3.2	
Approach LOS		C						B			A	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		33.8			7.1	26.7		7.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		5.7			4.5	5.7		4.5				
Max Green Setting (Gmax), s		35.0			20.0	35.0		30.0				
Max Q Clear Time (g_c+11), s		5.4			2.5	14.1		3.3				
Green Ext Time (p_c), s		3.8			0.1	6.9		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			8.2									
HCM 6th LOS			A									
Notes												

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						

Intersection
Intersection Delay, s/veh 18.2
Intersection LOS \quad C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&		${ }^{7}$	F		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	42	45	123	22	43	42	57	252	14	22	354	49
Future Vol, veh/h	42	45	123	22	43	42	57	252	14	22	354	49
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	0	0	2	0	0	0	4	4	0	0	2	2
Mvmt Flow	46	49	134	24	47	46	62	274	15	24	385	53
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	2	WB
Conflicting Approach Left	SB	NB	EB	1
Conflicting Lanes Left	2	2	1	EB
Conflicting Approach RighNB	SB	WB	1	
Conflicting Lanes Right	2	2	1	24.8
HCM Control Delay	13.3	11.6	15	C

Lane	NBLn1 NBLn2 EBLn1WBLn1 SBLn1 SBLn2					
Vol Left, \%	100%	0%	20%	21%	100%	0%
Vol Thru, \%	0%	95%	21%	40%	0%	88%
Vol Right, \%	0%	5%	59%	39%	0%	12%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	57	266	210	107	22	403
LT Vol	57	0	42	22	22	0
Through Vol	0	252	45	43	0	354
RT Vol	0	14	123	42	0	49
Lane Flow Rate	62	289	228	116	24	438
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.121	0.519	0.395	0.216	0.045	0.755
Departure Headway (Hd)	7.008	6.46	6.237	6.683	6.77	6.208
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	514	561	578	536	531	587
Service Time	4.721	4.173	4.283	4.737	4.481	3.92
HCM Lane V/C Ratio	0.121	0.515	0.394	0.216	0.045	0.746
HCM Control Delay	10.7	15.9	13.3	11.6	9.8	25.6
HCM Lane LOS	B	C	B	B	A	D
HCM 95th-tile Q	0.4	3	1.9	0.8	0.1	6.7

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 7.4 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\uparrow	
Traffic Vol, veh/h	25	15	19	3	27	5	11	22	1	8	18	26
Future Vol, veh/h	25	15	19	3	27	5	11	22	1	8	18	26
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Heavy Vehicles, \%	0	0	0	0	0	0	0	0	100	0	11	0
Mvmt Flow	34	20	26	4	36	7	15	30	1	11	24	35
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	1	1
Conflicting Approach Right	NB	SB	WB	
Conflicting Lanes Right	1	1	1	1
HCM Control Delay	7.5	7.4	7.5	7.3
HCM LOS	A	A	A	A

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	32%	42%	9%	15%
Vol Thru, \%	65%	25%	77%	35%
Vol Right, \%	3%	32%	14%	50%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	34	59	35	52
LT Vol	11	25	3	8
Through Vol	22	15	27	18
RT Vol	1	19	5	26
Lane Flow Rate	46	80	47	70
Geometry Grp	1	1	1	1
Degree of Util (X)	0.054	0.089	0.054	0.076
Departure Headway (Hd)	4.221	4.028	4.094	3.886
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	839	881	866	911
Service Time	2.293	2.091	2.163	1.955
HCM Lane V/C Ratio	0.055	0.091	0.054	0.077
HCM Control Delay	7.5	7.5	7.4	7.3
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.2	0.3	0.2	0.2

Intersection						
Int Delay, s/veh	6.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	T	「
Traffic Vol, veh/h	211	124	149	202	128	47
Future Vol, veh/h	211	124	149	202	128	47
Conflicting Peds, \#/hr	0	3	3	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	115	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	3	0	3	1	2	5
Mvmt Flow	234	138	166	224	142	52

120: N 10th Ave \& Stayton Rd SE Performance by movement

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Denied Delay (hr)	0.1	0.1	0.1	0.2	0.7	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Denied Del/Veh (s)	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.4	0.2	0.0
Total Delay (hr)	4.8	7.2	3.6	1.8	5.8	1.5	6.5	3.8	2.4	8.9	7.5	7.8
Total DelVeh (s)												

120: N 10th Ave \& Stayton Rd SE Performance by movement

Movement	All
Denied Delay (hr)	0.0
Denied Del/Veh (s)	0.1
Total Delay (hr)	1.0
Total Del/Veh (s)	4.7

Appendix H 2040 PM Queueing

	7	4	4		\downarrow	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	71	132	565	174	622	
v/c Ratio	0.38	0.46	0.68	0.31	0.49	
Control Delay	39.5	12.6	20.0	4.3	5.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.5	12.6	20.0	4.3	5.8	
Queue Length 50th (ft)	30	0	183	17	92	
Queue Length 95th (ft)	80	51	361	38	175	
Internal Link Dist (ft)	503		600		854	
Turn Bay Length (ft)		160		120		
Base Capacity (vph)	873	866	1131	992	1716	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.15	0.50	0.18	0.36	

Intersection Summary

	\rangle	\rightarrow	7		4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	120	376	94	287	100	497	56	616
v / C Ratio	0.45	0.82	0.41	0.69	0.66	0.65	0.49	0.89
Control Delay	26.7	48.5	26.2	42.2	65.6	28.6	61.7	46.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.7	48.5	26.2	42.2	65.6	28.6	61.7	46.7
Queue Length 50th (ft)	50	213	38	154	64	256	36	374
Queue Length 95th (ft)	97	\#389	78	273	124	439	81	\#704
Internal Link Dist (ft)		1212		498		611		700
Turn Bay Length (ft)	100		100		175		125	
Base Capacity (vph)	409	523	415	532	334	760	345	689
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.72	0.23	0.54	0.30	0.65	0.16	0.89
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.								

TECHNICAL MEMORANDUM \#4

Date:
February 18, 2018
To: Lance Ludwick and Dan Fleishman (City of Stayton)
From: Susan Wright, PE (Kittelson \& Associates, Inc.)
Darci Rudzinski (Angelo Planning Group)

Project \#: 22352

Subject: System Alternatives

TABLE OF CONTENTS

Introduction .. 1
Transportation Needs .. 2
Alternatives... 4
Funding .. 26
Next Steps ... 26
References ... 26
Appendices.. 31

INTRODUCTION

This memorandum describes, evaluates, and prioritizes the transportation improvement alternatives under consideration for inclusion in the City of Stayton Transportation System Plan (TSP) Update. It draws on the needs identified in the Existing and Future Conditions

IN THIS MEMO

- Overview of Needs
- Alternatives Analysis and Evaluation
- Funding Overview memorandum (Reference 1) and through the October 2018 public engagement process, as summarized in the Open House \#1 Summary memorandum (Reference 2). It describes alternatives to address these needs and evaluates them using the evaluation criteria described in the Goals, Objectives, and Evaluation Criteria memorandum (Reference 3) and the feedback received through the January 2019 public engagement process, as summarized in the Open House \#2

Summary memorandum (Reference 4). Finally, it draws on funding data provided in the Existing and Future Conditions memorandum to develop recommendations for a preferred plan and for a financially-constrained plan.

IRANSPORTATION NEEDS

The Existing and Future Conditions memorandum and the Open House \# 1 Summary memorandum together identify the transportation system's future needs. The Existing and Future Conditions memorandum describes analysis performed to determine transportation needs based on quantitative and qualitative levels of service across all modes, while the Open House \# 1 Summary memorandum describes public feedback received through an in-person open house on October 17 th, 2018 and a virtual open house held between October $17^{\text {th }}, 2018$ and October $28^{\text {th }}, 2018$. The primary needs identified in these memoranda are described in the following sections.

PEDESTRIAN SYSTEM

Both the Existing and Future Conditions memorandum and the Open House \# 1
Summary memorandum highlight improving the pedestrian system as an important need for the Stayton transportation system.

The Existing and Future Conditions memorandum highlights all pedestrian system "gaps" (areas without existing sidewalks). It also shows the results of a qualitative level of service analysis conducted for the pedestrian system, identifying roadways with "good", "fair", and "poor" ratings for pedestrian level of service. Roadways with "poor" ratings and those called out as "gaps" should be prioritized for sidewalk and crossing improvements.

The Open House \#1 Summary memorandum shows that the most frequently commented upon item throughout the public engagement process was the pedestrian system. Many specific areas were noted as needing improvements; these areas should also be considered for sidewalk and crossing improvements.

BICYCLE SYSTEM

Similar to the pedestrian system, both the Existing and Future Conditions memorandum and the Open House \# 1 Summary memorandum highlight improving the bicycle system as an important need for the Stayton transportation system.

The Existing and Future Conditions memorandum highlights all bicycle system "gaps" (roadways with high speeds or high traffic volumes that do not have adequate bicycle facilities). It also shows the results of a qualitative level of service analysis conducted for the bicycle system, identifying roadways with "good", "fair", and "poor" ratings for bicycle level of service. Roadways with "poor" ratings and those called out as "gaps" should be prioritized for bicycle infrastructure improvements.

The Open House \#1 Summary memorandum describes locations that the public noted as needing improvements. These areas should also be considered for bicycle infrastructure improvements.

PUBLIC TRANSPORTATION SYSTEM

As described in the Existing and Future Conditions memorandum, Cherriots Route 30X currently makes three stops within the Stayton urban growth boundary. Cherriots serves each of these stops four times per day in both direction and does not operate on weekends or holidays. As discussed in that memorandum and as noted in the open house process, this infrequent service is not effective for commuting to and from Salem. Also noted in the open house process is the need for improved bus stop infrastructure and for transit options that increase access within Stayton, such as a local circulator.

MOTOR VEHICLE SYSTEM

The Existing and Future Conditions memorandum describes the operations analysis conducted at 22 study intersections throughout the Stayton urban area. The analysis of existing and projected future conditions found that all study intersections are expected to meet the respective jurisdictional motor vehicle operational standards in 2040. Based on this result, no motor vehicle capacity improvements are suggested at this time. However, the analysis of existing and future conditions and the open house engagement process identified other motor vehicle system needs. The following locations should be examined for improvements:

GOLF CLUB ROAD/SHAFF ROAD

This location is currently signed as all-way stop control and is projected to operate acceptably per jurisdictional capacity standards through 2040. However, it meets signal warrants and has been identified as a potential location for improvement.

WILCO ROAD/W WASHINGTON STREET

This five-legged intersection serves as the entrance to Stayton for vehicles approaching from the southwest and has the potential to be improved from an aesthetics, driver expectations, and safety point of view.

N SIXTH AVENUE AND N TENTH AVENUE S-CURVES

E Washington Street, E Jefferson Street, and Stayton Road SE currently serve as a through route connecting downtown and OR 22. The three roads are linked through a pair of S-curves on N Sixth Avenue and N Tenth Avenue. These locations, which are currently signed as stop-controlled for non-major movements, have the potential to be improved from a safety and driver expectation point of view.

GOLF LANE

Golf Lane currently intersects Cascade Highway SE 500 feet north of Whitney Street. Per the Whitney Street/Cascade Highway operations analysis study, referenced in the Existing and Future Conditions memorandum, Golf Lane should be realigned to intersect Cascade Highway directly opposite Whitney Street. A May 19, 2003 Memorandum of Understanding between Marion County and the City of Stayton gives further details.

SAFETY

The Existing and Future Conditions memorandum describes traffic safety outcomes in Stayton between 2011 and 2015. It identifies high-crash locations at four intersections in Stayton, each of which are on- or off-ramps to OR 22. It also notes that the segment immediately north of Whitney Street on Cascade Highway SE was included on the 2016 ODOT Statewide Priority Index System (SPIS) list. Lastly, it notes seven pedestrian crashes, six bicycle crashes, and two total fatal crashes in Stayton between 2011 and 2015. Locations and crash trends noted in this memorandum should be evaluated for safety improvements.

In addition to crash data, informal discussion of near misses and perceived-unsafe locations offers valuable information on additional locations that should be evaluated for safety improvements. The Stayton TSP Public Advisory Committee described locations throughout Stayton that have experienced close calls or that have the potential to be improved. Their feedback is contained in the Existing and Future Conditions memorandum.

STORMWATER MANAGEMENT

City staff has described improved stormwater management practices as a need for the Stayton transportation system.

ALTERNATIVES

The following alternatives are proposed to address the needs identified above for Stayton's transportation system. The alternatives include transportation improvements to the motor vehicle, bicycle, and pedestrian systems and plan and policy updates to Stayton's street cross-sections, functional classification map, and local street connectivity map. These alternatives were presented at Open House \#2 and public feedback is documented in the Open House \#2 Summary memorandum.

BICYCLE AND PEDESTRIAN SYSTEM ALTERNATIVES

Pedestrian and bicycle infrastructure standards for Stayton roadways are called out in the 2015 Stayton Final Design Standards (Appendix A). Appendix B shows the existing pedestrian and bicycle infrastructure on each of these roadways, the applicable
standard, and the improvements needed for the roadway to meet the standard. It also describes project priorities, with Tier I the highest priority and Tier IV the lowest. Tiers were determined based on the following guidelines:

- Tier I project priority denotes projects needed at locations with poor pedestrian or bicycle infrastructure on both sides of the roadway in developed areas known to have demand for multimodal infrastructure.
- Tier Il project priority denotes projects needed at locations with poor pedestrian or bicycle infrastructure in developed areas. These locations may not be known to have as high of a multimodal demand as Tier I locations.
- Tier III project priority denotes projects needed at locations with poor pedestrian or bicycle infrastructure in less-developed areas within city limits or projects needed at locations with existing pedestrian or bicycle infrastructure that does not meet standards, such as narrow sidewalks or bike lanes.
- Tier IV project priority denotes projects needed at locations outside of city limits. These should be constructed as development occurs.
Figure 1 and Figure 2 show the necessary pedestrian and bicycle improvement projects and their respective tiers. Table 1 shows the amount of funding needed to complete the projects in each tier.

Table 1. Pedestrian and Bicycle Improvement Funding Needs

Tier	Pedestrian Projects	Bicyclist Projects
Tier 1	$\$ 960,000$	$\$ 3,340,000$
Tier 2	$\$ 1,455,000$	$\$ 8,480,000$
Tier 3	$\$ 10,540,000$	$\$ 1,180,000$
Tier 4	$\$ 5,690,000$	$\$ 9,590,000$

In addition to completing the bicycle and pedestrian network along roadway segments, the public engagement process noted several locations that could be improved through the implementation of crosswalks. These locations are:

- Fern Ridge Road/N Third Avenue
- Along Shaff Road, east of Stayton Middle School
- \quad N First Avenue at W Locust Street and E Cedar Street (existing crosswalks could be enhanced)
- Shaff Road/Quail Run Avenue

INTERSECTION ALTERNATIVES

The following describes the alternatives identified to address needs at several study intersections. The tables identify the traffic operations impact of each alternative, the estimated cost, and provide an evaluation score based on the TSP Goals, Objectives, and Evaluation Criteria presented in Memorandum \#2. Cost estimates are preliminary

Pedestrian Improvement Projects
Collector or Higher Classification
Stayton, Oregon

Figure 1

Bicycle Improvement Projects Collector or Higher Classification Stayton, Oregon
and do not include right-of-way acquisition costs. Each criterion was evaluated on a three-point scoring scale (-1, 0, or 1 point) to rate the degree to which proposed alternatives align with each of the TSP's objectives. The evaluation for each criterion is provided in Appendix C.

Golf Club Road SE / Shaff Road Intersection Control Upgrade

The intersection of Golf Club Road SE and Shaff Road is currently all-way stop controlled. As shown in Table 2, it currently operates at an acceptable level of service. However, based on existing vehicular volumes, this intersection meets signal warrants as prescribed in the Manual for Uniform Traffic Control Devices (Reference 5). Signal warrant analysis for this location is shown in Appendix D. Additionally, during the public engagement process, this intersection was noted to need intersection control upgrade to improve traffic flow. Four alternatives were evaluated for this location:

- a no-build alternative in which no changes are made to the existing intersection,
- a single-lane roundabout,
- a traffic signal with the addition of an eastbound left-turn lane, and
- a traffic signal with the addition of an eastbound left-turn lane and realignment of the southbound approach to smooth the horizontal curve.
A sketch of the roundabout alternative is shown in Figure 3 and a sketch of the traffic signal with realignment is shown in Figure 4. Projected operations analysis for the existing and 2040 PM peak hour scenarios, the cost estimate, and evaluation score are shown in Table 2.

Table 2. 2040 Weekday PM Peak Hour Operations and Evaluation (Golf Club Rd/Shaff
Road)

Alternative	Scenario	Delay	Level of Service	Cost Estimate	Evaluation Score
1A - No-build	Existing	20.9	D	\$0	-3
	2040	25.3	D		
1B - Roundabout	Existing	8.9	A	\$2,000,000	+8
	2040	9.9	A		
1C - Traffic Signal	Existing	8.5	A	\$750,000	+6
	2040	9.4	A		
1D - Traffic Signal with Realignment	Existing	8.5	A	\$3,000,000	+7
	2040	9.4	A		

The existing eastbound and westbound through movements are offset between the approach and the exit of the intersection due to the lack of an eastbound left-turn lane at the intersection. To mitigate a potential safety issue for eastbound and westbound vehicles that would no longer be required to stop at this intersection, the signalized intersection alternative cost estimates include the addition of an eastbound left-turn lane. The traffic signal with realignment alternative includes realignment of the southbound approach to smooth the horizontal curve on Golf Club Road SE.

At Open House \#2, held in January 2019, the public expressed support for the roundabout and traffic signal alternatives.

\mathbb{R} K KITTELSSOCIATES

Stayton Road SE/Wilco Road Intersection Control Upgrade

The Stayton Road SE/Wilco Road intersection is a five-leg intersection on the southwest edge of Stayton. It consists of two intersections in close proximity: an all-way stopcontrolled intersection and a second, smaller, minor-approach stop control intersection 70 feet southeast of the first. As shown in Table 3, it currently operates at an acceptable level of service. However, during the public engagement process, this intersection was noted as congested and in need of a traffic control upgrade. Additionally, because this intersection serves as an entrance to the city from the southwest, a more aesthetically-pleasing intersection could enhance perception of the city.

Three alternatives were considered for this location:

- a no-build alternative in which no changes are made to the existing intersection,
- an all-way stop controlled alternative in which access to Ida Street is restricted from Jetters Way, and
- a single-lane roundabout.

A sketch of the access restriction alternative is shown in Figure 5 and a sketch of the roundabout alternative is shown in Figure 6. Projected operations analysis for the existing and 2040 PM peak hour scenarios, the cost estimate, and evaluation score for each alternative are shown in Table 3.

Table 3. 2040 Weekday PM Peak Hour Operations and Evaluation (Stayton Road/Wilco Road)

Alternative	Scenario	Delay	Level of Service	Cost Estimate	Evaluation Score
2A - No-build	Existing	12.0	B	$\$ 0$	-3
2B - All-way Stop with	2040	Existing	13.6	B	$\$.3$
Reconfiguration	2040	B	$\$ 750,000$	+7	
2 C - Roundabout	Existing	5.8	B	A	$\$ 2,000,000$

At Open House \#2, the public expressed support for both the all-way stop with reconfiguration alternative and the roundabout alternative. It was noted that the roundabout alternative must be able to accommodate farm vehicles.

Golf Lane SE Realignment

As discussed in the Existing and Future Conditions memorandum, Golf Lane SE should be realigned to intersect Cascade Highway directly opposite Whitney Street when traffic volumes on Golf Lane warrant a signal at the intersection with Cascade Highway. Annexation and development of the surrounding area could add trips to the Cascade Highway SE/Golf Lane SE intersection, which is currently minor-approach stop controlled. Additional traffic at this intersection could lead to operational and safety deficiencies. This TSP update will consider two alternatives for this location: a no-build alternative in which no changes are made to the existing intersections and realignment of Golf Lane as described.

KITTELSON \&ASSOCIATES

The wetlands surrounding Mill Creek pose significant environmental constraints to the realignment of Golf Lane SE. Advanced engineering may be necessary to avoid or mitigate adverse wetland impacts. The cost estimate shown for this alternative is preliminary and will be revisited for inclusion in the draft TSP.

No operational analyses were conducted at the existing intersections of Golf Lane/Cascade Highway SE or Whitney Street/Cascade Highway SE; however, the projected traffic along Golf Lane is not anticipated to trigger signal warrants. The Existing and Future Conditions memorandum discussed two fatal crashes that occurred at this intersection in the last 5 years. A pedestrian was struck and killed by a southbound passenger vehicle south of the Golf Lane SE intersection in 2014. Additionally, a westbound left-turning vehicle and northbound through-moving vehicle collided, resulting in a fatality and an incapacitating injury, in 2017. The proposed realignment alternative is not intended to be a direct safety enhancement at this location. Extending the sidewalk on the west side of Cascade Highway from the ramp terminal to the signal at Whitney would help pedestrians to cross at the signal.

Table 4. Evaluation (Golf Lane Realignment)

Alternative	Cost Estimate	Evaluation Score
3A - No-build	$\$ 0$	+1
3B - Realign Golf Lane to Whitney Signal	$\$ 3,000,000$	+4

N Sixth Avenue Traffic Control Improvements

The predominant vehicular travel route between Cascade Highway and OR 22 to the east features three roads (E Washington Street, E Jefferson Street, and Stayton Road SE) with two S-curves between them, on Sixth Avenue and Tenth Avenue. The Sixth Avenue S-curve currently features stop-control for minor approaches and free-flow for turning movements between E Jefferson Street and E Washington Street.

The 2004 TSP presents a preferred alternative of constructing roundabouts at both intersections on the N Sixth Avenue S-curve. This alternative was not considered for the TSP Update based on lack of support for the improvement from the City and County. During the public engagement process, citizens commented that the two intersections that make up this S-curve need pedestrian improvements, as they are currently difficult to navigate on foot. Additionally, sight distance for minor approach vehicles can be an issue at this location.

Three alternatives were considered:

- a no-build alternative in which no changes are made to the existing intersections,
- a build alternative in which minor approach traffic is restricted from entering at either intersection, and
- a build alternative in which minor approach traffic is restricted from entering at the southern intersection and the northern intersection is converted to all-way stop control.
A sketch of the approach restriction alternative is shown in Figure 7 and a sketch of the all-way stop control alternative is shown in Figure 8. Table 5 shows the cost estimate and evaluation score for all three alternatives.

Table 5. Evaluation (Sixth Ave/Jefferson and Washington Streets)

Alternative	Cost Estimate	Evaluation Score
4A - No-build	$\$ 0$	-3
4B - Approach Restrictions	$\$ 150,000$	+6
4C - All-Way Stop Control	$\$ 150,000$	+6

At Open House \#2, the public expressed support for the all-way stop control alternative.

N Tenth Avenue Traffic Control Improvements

The Tenth Avenue S-curve currently features stop-control for minor approaches and free-flow for turning movements between E Washington Street and Stayton Road SE.

The 2004 TSP presents a preferred alternative of constructing roundabouts at both intersections on the N Tenth Avenue S-curve. This alternative was not considered for the TSP Update based on lack of support for the improvement from the City and County.

During the public engagement process, citizens commented that the two intersections that make up this S-curve need pedestrian improvements, as they are currently difficult to navigate on foot. Additionally, sight distance for minor approach vehicles can be an issue at this location.

Three alternatives were considered:

- a no-build alternative in which no changes are made to the existing intersections,
- a build alternative in which the Tenth Avenue/Stayton Road SE intersection is converted to a mini-roundabout, and
- a build alternative in which the Tenth Avenue/Stayton Road SE intersection is converted to all-way stop control.
Figure 9 shows a sketch of the roundabout alternative. Table 6 shows PM peak hour operations at the Tenth Avenue/Stayton Road SE intersection, the cost estimates, and evaluation scores for all three alternatives.

RK KITTELSON

Table 6. Weekday PM Peak Hour Operations and Evaluation (Tenth Ave/Stayton Road and Jefferson Street)

Alternative	Scenario	Delay	Level of Service	Cost Estimate	Evaluation Score
5A - No-build	Existing	6.5	A	\$0	-3
	2040	8.9	A		
5B - Mini-Roundabout	Existing	3.8	A	\$500,000	+7
	2040	5.3	A		
5C - All-Way Stop Control	Existing	8.5	A	\$150,000	+6
	2040	11.7	B		

At Open House \#2, the public expressed support for the mini-roundabout alternative. One important factor noted was to maintain access to Santiam Hospital to the north.

SAFETY ALTERNATIVES

From 2011 to 2015 , over 350 vehicle crashes occurred within the Stayton urban growth boundary, including over 150 crashes that resulted in an injury and two fatal crashes. An additional fatal crash occurred in 2017. Alternatives intended to improve safety outcomes and reduce crashes occurring in Stayton are shown below. At Open House \#2, the public expressed support for each of these alternatives.

Protected Left-Turns at N First Avenue/Washington Street

The intersection of N First Avenue and Washington Street currently features permissive left-turns on all approaches. This results in conflicts between left-turning vehicles and oncoming traffic. From 2011 to 2015, nine of the ten crashes occurring at this intersection involved angle or turning movements, and four of these crashes involved a left-turning vehicle colliding with an oncoming through movement vehicle.

Changing the left-turns at this intersection from permissive to protected eliminates conflicts between left-turning vehicles and oncoming through vehicles. As shown in Table 7, this change would increase delay at this intersection from level of service B to level of service D.

Table 7. 2040 Weekday PM Peak Hour Operations and Evaluation (1 ${ }^{\text {st }}$ Avenue/Washington Street)

Alternative	Scenario	Delay	Level of Service	Cost Estimate	Evaluation Score
6A - No-build	Existing	19.5	B	$\$ 0$	0
6B - Protected Left-Turns	2040	20.1	Cxisting	38.0	D
	2040	40.8	D	$\$ 10,000$	+1

Signalize Cascade Highway SE/OR 22 WB Ramps

The intersection of Cascade Highway and OR 22 WB is currently two-way stop controlled. This results in conflicts as minor approach vehicles must wait for gaps in
major approach traffic to proceed. From 2011 to 2015, all nine crashes occurring at this intersection involved angle or turning movements between a minor approach and major approach vehicle.

Improving this intersection's control from stop-controlled to signalized would eliminate many of these conflict points. As shown in Table 8, it would also improve intersection operations. As shown in Appendix D, this intersection meets MUTCD signal warrants (Reference 4).

Table 8. 2040 Weekday PM Peak Hour Operations and Evaluation (Cascade Highway/OR22 WB)

| Alternative | Scenario | Delay | Level of Service | Cost Estimate | Evaluation
 Score |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7A - No-build | Existing | 20.6 | C | $\$ 0$ | -3 |
| | 2040 | 20.6 | C | $\$ 0$ | +6 |
| 7B - Signalized | Existing | 5.6 | A | $\$ 500,000$ | +1 |

Restrict Left-Turns onto OR 22 at Fern Ridge Road and Old Mehama Road

The intersections of Fern Ridge Road/OR 22 and Old Mehama Road/OR 22 are currently two-way stop controlled. When drivers approaching OR 22 from a minor approach make a left-turn or through movement, they must navigate conflicts from both major approaches, resulting in more conflict points and potential safety issues. At the intersection of Fern Ridge Road and OR 22, 11 of the 13 crashes occurring from 2011 to 2015 involved a minor approach left-turn or through movement and at the intersection of Old Mehama Road and OR 22, both crashes occurring from 2011 to 2015 involved a minor approach left-turn or through movement. Restricting these movements, and rerouting traffic through the Cascade Highway interchange, would eliminate conflict points that lead to these crashes.

FUNCTIONAL CLASSIFICATION MAP UPDATE

As part of the TSP update process, the functional classification map approved for the 2004 Stayton TSP may be updated. The proposed updates to the functional classification map include:

- Classify E Virginia Street and E Pine Street as neighborhood collectors.
- Classify S First Avenue south of Water Street as a principal arterial.

The proposed updated roadway functional classification map is shown in Figure 10. Roadways with a proposed functional classification change are highlighted in yellow. Note that between the 2004 Stayton TSP and this TSP update, the designation of

$$
\begin{array}{r|c}
\text { Updated Functional Roadway Classification } & \text { Figure } \\
\text { Stayton, Oregon } & 10
\end{array}
$$

"neighborhood collector" was added as a functional classification. Because it has already been made, this change was not called out as a proposed update to the functional classification map.

STREET CROSS-SECTIONS

The City of Stayton has street design standards that vary based on the roadway's designated functional classification. The City has specific cross-section requirements for nearly every collector and arterial in the city (see 2015 Stayton Final Design Standards in Appendix A) based on a variety of existing conditions and constraints. These crosssection requirements identify the number of travel lanes and specific the widths of each cross-sectional element; however, the basic elements of each facility type are shown in the following Exhibits.

All street classifications require a landscape strip between the curb and the sidewalk (with the exception of local streets in the downtown). This provides a better experience (lower traffic stress) for pedestrians and provides space for potential stormwater management.

Local streets and neighborhood collectors do not require bike lanes. All other collectors and arterials should have bike lanes with the exception of $1^{\text {st }}$ Avenue due to right-ofway constraints and Ida Street which needs on-street parking. Otherwise, on-street parking is only included in the typical standard on neighborhood collectors and local streets.

Exhibit 1 Arterial Cross-Section With Center Turn-Lane

Exhibit 2 Arterial Cross-Section Without Center Turn-Lane

Exhibit 3 Collector Cross-Section With Center Turn-Lane

Exhibit 4 Collector

Exhibit $5 \quad$ Neighborhood Collector

Exhibit 6 Local Street

RECOMMENDED DESIGN STANARD CHANGES

The 2004 City of Stayton TSP included four significant improvements to accommodate high levels of projected growth. Because the projected level of growth has not
occurred and the projected growth is slower than previously assumed, the following improvements are recommended for removal from the TSP and the design standard is recommended to be updated accordingly.

- Cascade Highway Widening: Widen Cascade Highway and First Avenue from three lanes to five lanes from Highway 22 to Ida Street (recommended to remain three lanes).
- Golf Club Road Widening: Widen Golf Club Road and Wilco Road to five lanes (recommended to remain three lanes).
- The standard for 5-lanes at major intersections is recommended to be removed from all facilities (Wilco Road, Fern Ridge Road, Golf Club Road, Cascade Highway, and Shaff Road)

Additionally, the updated TSP will examine the feasibility of narrower lane widths on roadways with functional classifications of collector or higher and narrower local street options to reduce pervious surface areas and improve stormwater management.

FUTURE STREET NETWORK MAP

The City's current TSP includes a future network plan to assure that the future street network within the Stayton planning area would develop as a grid system. The grid system assures that access, mobility, and circulation will be achieved at a high level throughout the city.

Figure 11 is the proposed updated future street network map that identifies future collectors and neighborhood collectors necessary to support future growth areas. Several future local streets are also shown to indicate the future location of intersections or desired connections in infill development areas; however, this figure does not include all future local streets. Future subdivisions and land development applications will be required to dedicate right-of-way and/or construct additional future local streets consistent with the City's connectivity and block length standards and to provide adequate access to their development.

FUNDING

As described in the Existing and Future Conditions memorandum, overall transportation funding has increased over the last five years and is assumed to continue to increase over the TSP planning horizon. As shown in that memorandum, approximately $\$ 28$ million dollars are anticipated to be available for transportation over the next 21 years. However, only a portion is assumed to be available for street improvements and capital projects (as opposed to street maintenance such as pavement preservation).

Table 9 illustrates the projected revenues for street improvements and capital projects over the next $1,5,10$, and 21 -year periods. Three scenarios are provided that vary in the assumed portion of gas taxes that could go towards these projects from the historical rate of $42 \%, 20 \%$, and 0%. As shown, depending upon street maintenance needs, between $\$ 6.68$ and $\$ 14.3$ million could be available for street improvements and capital projects over the next 21 years.

Table 9. Potential Funding for Street Improvements and Capital Projects

Percentage of Gas Tax Going Towards	FY $19-20$	5 -Year	10 -Year	20 -Year
Street Improvements and Capital Projects	$\$ 550,398$	$\$ 3,284,403$	$\$ 6,667,350$	$\$ 14,297,943$
42% (High-Funding Scenario)	$\$ 378,904$	$\$ 2,409,954$	$\$ 4,866,833$	$\$ 10,309,163$
20% (Medium-Funding Scenario)	$\$ 223,000$	$\$ 1,615,000$	$\$ 3,230,000$	$\$ 6,683,000$
0% (Low-Funding Scenario)				

NEXT STEPS

The project team will collect input from the TAC, CAC, and the public on the proposed alternatives, the proposed project tiers, and evaluations to identify the projects to include in the preferred plan and identify the highest priority projects to include in the cost-constrained plan based on the funding summary.

REFERENCES

1. Kittelson \& Associates, Inc. Existing and Future Conditions Memorandum. October 2018.
2. Kittelson \& Associates, Inc. Open House \# 1 Summary Memorandum. November 2018.
3. Kittelson \& Associates, Inc. Goals, Objectives, and Evaluation Criteria. August 2018.
4. Kittelson \& Associates, Inc. Open House \#2 Summary Memorandum. January 2019.
5. Federal Highway Administration. Manual on Uniform Traffic Control Devices. May 2012.

Appendix A 2015 Stayton Final Design Standards

GEOMETRIC DESIGN REQUIREMENTS BY STREET FUNCTIONAL CLASSIFICATION*

Right-of-way	Improvement Width (ft) (curb - curb)	 Size Lanes (No. / Width)	$\begin{gathered} \hline \text { Bicycle } \\ \text { Lanes } \\ \text { (No./ Width) } \end{gathered}$	On-street Parking (No. / Width)	Sidewalk Alignment	Sidewalk	Landscape Area Width (ft)	Street where the Standard is to Apply			jor Intersections	Roadway Jurisdiction
Width (ft)						$\begin{gathered} \text { Width } \\ (f t) \end{gathered}$		Specific Street	Where Standard will Apply	Lanes **	Intersection Locations	
Major (Principal) Arterial										**Lanes 100' + taper (add right-of-way each side)		
Variable	N/A	Highway 22	Along northern Stayton UGB	N/A	Varies	ODOT						
100'	74	4/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	6	Cascade Highway	Highway 22 to Regis Street (TSP shows 5 lanes)	5 lanes	Shaff	Marion Co.
Minor Arterial												
$100{ }^{\prime}$	74	4/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	6 '	Golf Club Road ${ }^{1}$	Highway 22 to Shaff Road	5 lanes	Shaff	Marion Co.
80^{\prime}	50^{\prime}	$2 / 12^{\prime}+14^{\prime}$	2/6'	No	Property line	$8{ }^{\prime}$	6	Shaff Road ${ }^{2}$	Wilco Road to ${ }^{\text {st }}$ Avenue	5 lanes	$1{ }^{\text {st }}$ Avenue \& Wilco	Marion Co.
$\begin{gathered} 60^{\prime} \\ \text { up to } 70^{\prime} \\ \hline \end{gathered}$	40^{\prime}	2/12'	2/6'	No	Property line	$\begin{aligned} & \hline 6^{\prime}-8^{\prime} \\ & \text { varies } \\ & \hline \end{aligned}$	5' - 8' varies	W. Washington Street ${ }^{3}$	Wilco Road to ${ }^{15 \text { st }}$ Ave. (City R/W per TSP)	3 lanes	$1{ }^{\text {stt, Gardner \& Wilco }}$	City
60	46' (${ }^{\text {stL }}$ to 3 (rd)	2/11' + 12'	2/6'	No	Curb line	$\begin{aligned} & \text { 6' - north } \\ & \text { 8' - south } \end{aligned}$	0^{\prime}	E. Washington Street ${ }^{4}$	$1{ }^{\text {st }}$ Avenue to $3^{\text {rd }}$ Avenue	3 lanes	${ }^{\text {st }}$ Avenue	Marion Co.
60^{\prime}	40^{\prime} ($3^{\text {rd }}$ to $10^{\text {trit }}$)	2/12'	2/6'	No	Property line	$6{ }^{\prime}$	6	E. Washington St. / $6^{\text {th }} /$ Jefferson St. / 10 ${ }^{\text {th }} 5$	$3{ }^{\text {rd }}$ Avenue to E. Santiam Street	3 lanes	Varies	Marion Co.
60^{\prime} to 80^{\prime}	50^{\prime}	$2 / 12^{\prime}+14^{\prime}$	2/6'	No	Curb line	8'	0	$1^{\text {st }}$ Avenue ${ }^{6}$	Regis Street to Washington Street	3 lanes	Varies	Marion Co.

 The Stayton TSP calss for a $100^{\circ} \mathrm{R} / \mathrm{W}$ \& 5-lane section. The City of Stayton and Marion County have not yet completed a conceptual design plan for Golf Club Road (Hwy 22 to Shaff/Wilco Road Intersection). Until a conceptual design plan is
approved by the City and Marion County for Golf Club Road, the City will review each development fronting Golf Club Road on a case-by-case basis to determine R/W dedications, pavement widths, \# of lanes, and frontage improvement (curb, sidewalk, approved by the City and Marion County for Golf Club Road, the City will review each development fronting Golf Club Road on a case-by-case basis to determine R/d dedications, pavement widths, $\#$ or fanes, and frontage improvement (curb, sidewal See Footnote 9 below.
${ }^{2}$ Shaff Road: Existing R/W varies. R/W dedications to 80^{\prime} are required -- 40^{\prime} from centerline unless otherwise required. See also Footnote 9 below for Golf Club/Shaff/Wilco Road intersection.
${ }^{3}$ W. Washington Street:
a. (1 ${ }^{\text {st }}$ Avenue to Wilco Road): This section is improved curb-to-curb. R / W and pavement widths vary. Use existing curbs to plan for SW \& bike lanes.
a. ($1^{\text {st }}$ Avenue to Evergreen): Existing R/W varies from 45^{\prime} 'to 55^{\prime} '. R/W dedications to 60 ' are required -- 30^{\prime} ' from centerline. 8^{\prime} ' sidewalk on north side from $1^{\text {st }}$ to Gardner Avenue.
c. (Evergreen to Wilco Road): Existing R/W is 60^{\prime} Width. No R/W dedication is anticipated, unless needed to allow for sidewalk widening and bike lane improvements.
d. (Intersections @ $1^{\text {st }}$, Gardner \& Wilco): R/W dedications will be required near $1^{\text {st }}$ Avenue and Wilco Road intersections.
${ }^{4}$ E. Washington Street:
a. ($1^{\text {st }}$ Avenue to $3^{\text {rd }}$ Avenue): This two block section from $1^{\text {st }}$ Avenue to $3^{\text {rd }}$ Avenue is part of the Downtown core area.
c. (E. Washington Street: $1^{1 t}$ to $3^{\text {rd }}$ Avenue): Existing R/W is 60^{\prime}. Pavement width narrows from $50^{\prime} @ 1^{\text {st }}$ Avenue to 44^{\prime} at $3^{3 d}$ Ave. R/W dedication is anticipated at corners.
${ }^{5}$ E. Washington Street:
a. ($3^{\text {rd }}$ Avenue to $10^{\text {th }}$ Avenue): This corridor from $1{ }^{\text {st }}$ Avenue to $10^{\text {th }}$ Avenue is improved from curb-to-curb. Pavement width is typically 40^{\prime}, with a few exceptions
b. (E. Washington: $3^{\text {rd }}$ to 6^{th} Avenue): Existing R/W is 60^{\prime}. Pavement width varies from $44^{\prime} @ 3^{\text {rd }}$ to $40^{\prime} @ 6^{6^{\mathrm{h}}}$. R/W dedication is anticipated at corners
c. ($6^{\text {it }}:$ Avenue / Washington to Jefferson Street): Existing R/W is 60^{\prime}. Pavement width is 40^{\prime}. R/W dedication is anticipated at corners
d. (Jefferson Street: $6^{\text {th }}$ to $10^{\text {th }}$ Avenue): Existing R/W is 60^{\prime}. Pavement width is 40^{\prime}. R/W dedication is anticipated at corners.
e. ($10^{\text {th }}$ Avenue / Jefferson to E. Santiam Street): Existing R/W is 60^{\prime}. Pavement width is $50^{\prime}+/$.. NO R/W dedication is anticipated.
${ }^{6} 1^{\text {st }}$ Avenue:
a. (Regis Street to Washington Street): The Stayton TSP calls for an 80^{\prime} R/W \& 3-lane section from Regis Street to the North Santiam River. R/W widths vary. Existing pavement width is $40+/$ - with 2 travel lanes and a center turn lane, but no bike lanes. Measure R/W from center section line of Section 10. In lieu of full R/W, City can accept $60^{\prime} \mathrm{R} / \mathrm{W}+$ a 10^{\prime} wide PUE/SW easement where approved
b. (Regis Street to Cedar): Existing R/W is 50^{\prime}. Minimum R/W dedication to 60^{\prime} is required - 30^{\prime} ' from centerline + a $10{ }^{\prime}$ wide PUE/SW easement.
c. (Cedar Street to Hollister Street): Existing R/W varies from 55^{\prime} to 60^{\prime}. Minimum R/W dedication to 60^{\prime} is required -30^{\prime} from centerline + a 10^{\prime} wide PUE/SW easement.
d. (Hollister Street to Washington Street): Existing R/W varies from 45' to 60^{\prime}. Minimum R/W dedication to 60^{\prime} is required -30^{\prime} from centerline + a 10^{\prime} wide PUE/SW easement.

Right-of-way	Improvement Width (ft) (curb - curb)	 Size Lanes (No. / Width)	$\begin{gathered} \text { Bicycle } \\ \text { Lanes } \\ \text { (No. / Width) } \end{gathered}$	$\begin{aligned} & \hline \text { On-street } \\ & \text { Parking } \\ & \text { (No. / Width) } \end{aligned}$	Sidewalk Alignment	Sidewalk	Landscape Area Width (ft)	Street where the Standard is to Apply		At Major Intersections		Roadway Jurisdiction
Width (ft)						Width (ft)		Specific Street	Where Standard will Apply	Lanes **	Intersection Locations	
Minor Arterial (continued)												
60^{\prime} or 80^{\prime}	50^{\prime}	2/12' $+14^{\prime}$	2/6'	No	Curb line	8'	6	$1^{\text {st }}$ Avenue ${ }^{7}$	Washington St. to Water St.	4 lanes	Ida	Marion Co.
80'	50^{\prime} to 36^{\prime}	2/12' + 14'	2/6'	No	Property line	8'	6 '	$1{ }^{\text {st }}$ Avenue ${ }^{8}$	S. of Water St. (taper out turn lane by bridge)	3 lanes	Water	Marion Co.
Major Collector												
80'	50^{\prime}	2/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	8'	Designated yellow in TSP	(Designated yellow in TSP or by PW Director)	Variable	Varies	City
80'	50^{\prime}	2/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	8'	Wilco Road ${ }^{9}$	Shaff Road (Signalized) to Ida Street (All Way Stop)	5 lanes	Shaff	Marion Co.
80'	50^{\prime}	2/12' $+14^{\prime}$ w/	2/6'	No	Property line	$6{ }^{\prime}$	$8{ }^{\prime}$	Washington - W. Stayton Road I Shaff Road ${ }^{10}$	West of Wilco Road Taper to 2 lanes @ UGB	3 lanes	Wilco	Marion Co.
80'	50^{\prime}	2/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	8	Fern Ridge Road ${ }^{11}$	$1{ }^{\text {st }}$ Avenue to Hwy 22	5 lanes	$1^{\text {st }}$ Avenue	Marion Co.
60^{\prime}	36	2/12'	2/6'	No	Property line	$6{ }^{\prime}$	5	Locust Street ${ }^{12}$	Wilco Road to ${ }^{\text {st }}$ Avenue	3 lanes	$1^{\text {st }}$ Avenue	City
60^{\prime}	36	2/12'	2/6'	No	Property line	6	5	Gardner Avenue ${ }^{13}$	Shaff Road to Washington Street	3 lanes	Shaff \& Washington	City
60^{\prime}	36	2/11'	Shared	217	Property line	$6{ }^{\prime}$	5	Ida Street ${ }^{14}$	Wilco Road to 19t Avenue	3 lanes	$1^{\text {st }}$ Avenue	City
60^{\prime}	36	2/12'	2/6'	No	Property line	$6{ }^{\prime}$	5	$10^{\text {th }}$ Avenue ${ }^{15}$	Fern Ridge Road to E. Santiam Street (3 lanes @ Hospital)	3 lanes	Ends \& Hospital	City
Minor Collector												
60^{\prime}	34^{\prime} \& 36	2/10' \& 2/11'	No	$217{ }^{\prime}$	Property line	5^{\prime}	$4.5{ }^{\prime}$ \& 5.5'	Designated green in TSP	Designated by green line on TSP map	2 lanes	Varies	City

${ }^{7} 1^{\text {st }}$ Avenue:
a. (Washington Street to Ida Street): The Stayton TSP calls for an 80^{\prime} R/W \& 3-lane section from Regis Street to the North Santiam River. R/W widths vary. Existing pavement width is $40+/-$ with two travel lanes and a center turn lane, but no bike lanes. Measure R/W from center section line of Section 10 . In lieu of full R/W, City can accept $60^{\prime} \mathrm{R} / \mathrm{W}+\mathrm{a} 10^{\prime}$ wide PUE/SW easement where approved.
b. (Washington Street to Ida Street): Existing R/W varies from 40' to 55^{\prime}, Minimum R/W dedication to 60^{\prime} is required - 30, fromer ${ }^{\prime}$.
c. (Ida Street to Water Street): Existing R/W varies from 56' to 59'. Minimum R/W dedication to 60^{\prime} ' is required - 30^{\prime} from center section line of Section 10 .
 section at Water Street. Minimum R/W dedication to 80^{\prime} is required south of Water Street - 40^{\prime} ' from centerline.
 and locations, and various water quality swale locations. New developments and substantial changes to existing development are to comply with the conceptual design plan unless otherwise approved by the City and Marion County.
${ }^{10}$ W. Washington Street \& W. Stayton Road / Shaff Road: See Footnote 9 above.
${ }^{11}$ Fern Ridge Road: Existing R/W varies from 60^{\prime} to 80^{\prime}. Minimum R/W dedication to 80^{\prime} is required - 40^{\prime} from centerline. Match north R/W \& curb lines near $10^{\text {th }}$ Avenue at end of Sylvan Springs subdivision.
${ }^{12}$ Locust Street: Existing R/W varies from 50^{\prime} to 60^{\prime}. Minimum R/W dedication to 60^{\prime} ' is required - 30^{\prime} from centerline. Match north R/W line. Only R/W dedication required between $1^{\text {st }}$ Avenue \& Birch on south side.
${ }^{13}$ Gardner Avenue: Existing R/W is 60 . Only R/W dedication required is radius at Shaff Road / Gardner Avenue intersection.
${ }^{14}$ Ida Street: Existing R/W is 60^{\prime}, except at NW corner of Evergreen. Minimum R/W dedication to 60^{\prime} is required - 30^{\prime} from centerline. R/W dedication required at corner of Evergreen.
${ }^{15} 10^{\text {th }}$ Avenue: Existing R/W varies 60^{\prime} to 70 '. R/W dedication, sidewalk and or slope easement is required for east side sidewalks north of E. Fir Street
2015 EDITION

Right-of-way	Improvement Width (ft) (curb - curb)	 Size Lanes (No. / Width)	$\begin{gathered} \text { Bicycle } \\ \text { Lanes } \\ \text { (No./ Width) } \end{gathered}$	$\begin{gathered} \text { On-street } \\ \text { Parking } \\ \text { (No./ Width) } \end{gathered}$	Sidewalk Alignment	Sidewalk Width (ft)	Landscape Area Width (ft)	Street where the Standard is to Apply		At Major Intersections		Roadway Jurisdiction
Width (ft)								Specific Street	Where Standard will Apply	Lanes **	Intersection Locations	
Local Streets												
60'	34^{\prime}	2/10'	No	277^{\prime}	Property line	5	7.5'	Standard residential street	Residential streets throughout the city	2 lanes	Varies	City
60^{\prime}	34^{\prime}	2/10'	No	$2 / 7{ }^{\prime}$	Property line	5	7.5	Long Cul-de-sacs	200 ' to 450' to end of bulb	2 lanes	Varies	City
50^{\prime}	30^{\prime}	2/11'	No	1/8'	Property line	5	4.5'	Short Cul-de-sacs	Less than 200' to end of bulb	2 lanes	Varies	City
45	28^{\prime}	2/10'	No	1/8'	Property line	5	3.5	Skinny Street (as approved)	Hillsides (or with PW Approval)	2 lanes	Varies	City
45 ' radius	38' radius		No	No	Curb line	5^{\prime}	0^{\prime}	Turnaround bulb	at end of cul-de-sacs	N/A		City
Downtown Commercial Streets												
60	40^{\prime}	2/13'	No	$2 / 7{ }^{\prime}$	Property line	9.5 '	0 '	Downtown Area	$1^{\text {st }}$ Avenue to $4^{\text {th }}$ Avenue Washington Street to Water Street	2 lanes	Varies	City
60^{\prime}	36	2/11'	No	$2 / 7{ }^{\prime}$	Property line	12^{\prime}	0 '	$3{ }^{\text {rd }}$ Avenue	Redevelopment: Water Street to Burnett Street per Downtown Plan	2 lanes	Varies	City
Industrial Streets												
80' (Industrial)	40^{\prime}	2/13'	No	$2 / 7{ }^{\prime}$	Property line	$5{ }^{\prime}$	$14{ }^{\prime}$	Industrial low use parking	Sidewalks per Public Works	2 lanes	Varies	City
60' radius (Industrial)	$\begin{gathered} \hline \text { TBD } \\ \left(45^{\prime} \mathrm{min}\right) \end{gathered}$	TBD	No	$2 / 7{ }^{\prime}$	Property line	$5 '$	14	Industrial turnaround bulb	At end of cul-de-sacs	N/A	Varies	City
Roundabouts ${ }^{16}$												
200' dia.	170' dia.	1 circular	No	No	Property line	$6{ }^{\prime}$	8'	Wilco Rd. / Ida St. / Washington St.	5-way intersection	N/A	Varies	Marion Co.
130 ' dia.	110' dia.	1 circular	No	No	Property line	$6{ }^{\prime}$	8	Washington St. / $6^{\text {th }} /$ Jefferson St. $/ 10^{\text {th }}$	Total of 4 between $1{ }^{\text {st }}$ Avenue to \& E. Santiam Street	N/A	Varies	Marion Co.
Alleys												
16	15	N/A	N/A	No	N/A	N/A	N/A	Alleys (as approved by Public Works)	As approved by Public Works	N/A	Varies	City

[^5][^6]
Appendix B Pedestrian and Bicycle Improvement Projects

Roadway	Segment	Functional_Classification	Direction	Pedestrian_Standard	Existing_Pedestrian_System	Pedestrian_Improvements_Needed	Tier
Cascade Highway	Highway 22 to Mill Creek Bridge	Principal	Southbound	6' sidewalks on property line	-6 foot sidewalk on curb line	-No Project	
Cascade Highway	Highway 22 to Mill Creek Bridge	Principal	Northbound	6' sidewalks on property line	-6 foot sidewalk on curb line	-No Project	
First Avenue	Regis Street to Washington Street	Principal	Southbound	8 ' sidewalks on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
First Avenue	Regis Street to Washington Street	Principal	Northbound	$8{ }^{\text {' }}$ sidewalks on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
First Avenue	Washington Street to Ida Street	Arterial	Southbound	8 8' sidewalks on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
First Avenue	Washington Street to Ida Street	Arterial	Northbound	8 ' sidewalks on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
First Avenue	Water Street to Santiam River Bridge	Arterial	Southbound	8 8' sidewalks on property line	-None	-Install 8 foot sidewalk on property line	T4
First Avenue	Water Street to Santiam River Bridge	Arterial	Northbound	8 8' sidewalks on property line	-None	-Install 8 foot sidewalk on property line	T4
Golf Club Road	Highway 22 to 400 feet north of Shaff Road	Arterial	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
Golf Club Road	Highway 22 to 400 feet north of Shaff Road	Arterial	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
Wilco Road	Shaff Road to 600 feet south	Collector	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
Wilco Road	Shaff Road to 600 feet south	Collector	Northbound	6 ' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	T3
Wilco Road	Deschutes Drive to Washington Street	Arterial	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
Wilco Road	Deschutes Drive to Washington Street	Arterial	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T1
Shaff Road/Fern Ridge Road	Stayton City Limit to Wilco Road	Collector	Eastbound	6 ' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
Shaff Road/Fern Ridge Road	Stayton City Limit to Wilco Road	Collector	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
Shaff Road/Fern Ridge Road	Wilco Road to Bi-Mart East Driveway	Arterial	Eastbound	8 ' sidewalks on property line	-5 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	Wilco Road to Bi-Mart East Driveway	Arterial	Westbound	8 8' sidewalks on property line	-4 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	First Avenue to Tenth Avenue	Collector	Eastbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	First Avenue to Tenth Avenue	Collector	Westbound	6' sidewalks on property line	-5 to 6 foot sidewalk on property line	-No Project	
Stayton Road	Stayton City Limit to Wilco Road	Arterial	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
Stayton Road	Stayton City Limit to Wilco Road	Arterial	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	
W Washington Street	Wilco Road to Myrtle Avenue	Arterial	Eastbound	6 ' to 8' sidewalks on property line (varies)	-None	-Install 6 to 8 foot sidewalk on property line	T2
W Washington Street	Wilco Road to Myrtle Avenue	Arterial	Westbound	6^{\prime} to 8' sidewalks on property line (varies)	-4 foot sidewalk on curb line	-Install 6 to 8 foot sidewalk on property line	T3
E Washington Street	First Avenue to Second Avenue	Arterial	Eastbound	8' sidewalk on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
E Washington Street	First Avenue to Second Avenue	Arterial	Westbound	6' sidewalk on curb line	-5 foot sidewalk on curb line	-No Project	
E Washington Street	Third Avenue to Sixth Avenue	Arterial	Eastbound	6' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
E Washington Street	Third Avenue to Sixth Avenue	Arterial	Westbound	6' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
Sixth Avenue	Washington Street to Jefferson Street	Arterial	Southbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalks on property line	T3
Sixth Avenue	Washington Street to Jefferson Street	Arterial	Northbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalks on property line	T3
Jefferson Street	Sixth Avenue to Tenth Avenue	Arterial	Eastbound	6 ' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalks on property line	
Jefferson Street	Sixth Avenue to Tenth Avenue	Arterial	Westbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalks on property line	T3
Tenth Avenue	Jefferson Street to Santiam Street	Arterial	Southbound	6' sidewalks on property line	-4 foot sidewalk half on curb line and half on property line	-Install 6 foot sidewalk on property line	T3
Tenth Avenue	Jefferson Street to Santiam Street	Arterial	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T2
Tenth Avenue	Santiam Street to Fir Street	Collector	Southbound	6' sidewalks on property line	-5 to 6 foot sidewalk on curb line	-No Project	
Tenth Avenue	Santiam Street to Fir Street	Collector	Northbound	6' sidewalks on property line	-6 foot sidewalk on curb line	-No Project	
E Santiam Street	Tenth Avenue to Highland Drive	Collector	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
E Santiam Street	Tenth Avenue to Highland Drive	Collector	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
W Locust Street	Wilco Road to Gardner Avenue	Collector	Eastbound	6' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
W Locust Street	Wilco Road to Gardner Avenue	Collector	Westbound	6' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
Gardner Avenue	Shaff Road to W Washington Street	Collector	Southbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	T3
Gardner Avenue	Shaff Road to W Washington Street	Collector	Northbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	T3
Kindle Way	Goshen Avenue to Shaff Road	Collector	Southbound	6' sidewalks on property line	-5 foot sidewalk on property line	-No Project	
Kindle Way	Goshen Avenue to Shaff Road	Collector	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
W Ida Street	Wilco Road to Holly Avenue	Collector	Eastbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
W Ida Street	Wilco Road to Holly Avenue	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
Westown Drive	Shaff Road to W Locust Street	Neighbordhood Collector	Southbound	5 5 sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Westown Drive	Shaff Road to W Locust Street	Neighbordhood Collector	Northbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Western Avenue	Westown Drive to Gardner Avenue	Neighbordhood Collector	Eastbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Western Avenue	Westown Drive to Gardner Avenue	Neighbordhood Collector	Westbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
W Regis Street	Gardner Avenue to First Avenue	Neighbordhood Collector	Eastbound	5 ' sidewalks on property line	-5 foot sidewalk on curb line	-No Project	
W Regis Street	Gardner Avenue to First Avenue	Neighbordhood Collector	Westbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Third Avenue	Fern Ridge Road to Regis Street	Neighbordhood Collector	Southbound	5 ' sidewalks on property line	-None	-Install 5 foot sidewalk on property line	T2
Third Avenue	Fern Ridge Road to Regis Street	Neighbordhood Collector	Northbound	5 ' sidewalks on property line	-4 foot sidewalk on curb line	-No Project	
Hollister Street	First Avenue to Seventh Avenue	Neighbordhood Collector	Eastbound	5 5 sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
Hollister Street	First Avenue to Seventh Avenue	Neighbordhood Collector	Westbound	5 ' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
Sixth Avenue	Santiam Street to Jefferson Street	Neighbordhood Collector	Southbound	5 5' sidewalks on property line	-4 foot sidewalk half on property line and half on curb line	-No Project	

Sixth Avenue	Santiam Street to Jefferson Street	Neighbordhood Collector	Northbound	5' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Virginia Street	Third Avenue to Fourth Avenue	Neighbordhood Collector	Eastbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Virginia Street	Third Avenue to Fourth Avenue	Neighbordhood Collector	Westbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Cascade Highway	Mill Creek Bridge to Whitney Street	Principal	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T1
Cascade Highway	Mill Creek Bridge to Whitney Street	Principal	Northbound	6' sidewalks on property line	-7 to 8 foot sidewalk meandering 5 to 20 feet away from curb line	-No Project	
Cascade Highway	Whitney Street to Shaff Road	Principal	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
Cascade Highway	Whitney Street to Shaff Road	Principal	Northbound	6' sidewalks on property line	-7 to 8 foot sidewalk meandering 5 to 20 feet away from curb line	-No Project	
Cascade Highway	Shaff Road to Regis Street	Principal	Southbound	6' sidewalks on property line	-6 foot sidewalk on curb line	-No Project	
Cascade Highway	Shaff Road to Regis Street	Principal	Northbound	6 ' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
First Avenue	Ida Street to Water Street	Arterial	Southbound	8 ' sidewalks on curb line	-6 to 9 foot sidewalk on curb line	-No Project	
First Avenue	Ida Street to Water Street	Arterial	Northbound	8 8' sidewalks on curb line	-4 to 5 foot sidewalk on curb line	-Install 8 foot sidewalk on curb line	T3
First Avenue	Santiam River Bridge to City Limits	Arterial	Southbound	8 8' idewalks on property line	-None	-Install 8 foot sidewalk on property line	T4
First Avenue	Santiam River Bridge to City Limits	Arterial	Northbound	8 8' sidewalks on property line	-4 foot sidewalk on curb line	-Install 8 foot sidewalk on property line	
Golf Club Road	Shaff Road to 400 feet north	Arterial	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
Golf Club Road	Shaff Road to 400 feet north	Arterial	Northbound	6' sidewalks on property line	-5 foot sidewalk on property line	-No Project	
Wilco Road	600 feet south of Shaff Road to Deschutes Drive	Collector	Southbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
Wilco Road	600 feet south of Shaff Road to Deschutes Drive	Collector	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T1
Shaff Road/Fern Ridge Road	Bi-Mart East Driveway to Gardner Avenue	Arterial	Eastbound	8 ' sidewalks on property line	-8 paved path on property line	-No Project	
Shaff Road/Fern Ridge Road	Bi-Mart East Driveway to Gardner Avenue	Arterial	Westbound	8^{\prime} sidewalks on property line	-4 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	Gardner Avenue to Fern Avenue	Arterial	Eastbound	8' sidewalks on property line	-4 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	Gardner Avenue to Fern Avenue	Arterial	Westbound	8 ' sidewalks on property line	-6 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	Fern Avenue to Douglas Avenue	Arterial	Eastbound	8 8' sidewalks on property line	-4 foot sidewalk on property line	-Install 8 foot sidewalk on property line	T3
Shaff Road/Fern Ridge Road	Fern Avenue to Douglas Avenue	Arterial	Westbound	8 8' sidewalks on property line	-None	-Install 8 foot sidewalk on property line	T1
Shaff Road/Fern Ridge Road	Douglas Avenue to First Avenue	Arterial	Eastbound	8 8' sidewalks on property line	-4 foot sidewalk on curb line	-Install 8 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Douglas Avenue to First Avenue	Arterial	Westbound	8' sidewalks on property line	-None	-Install 8 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Tenth Avenue to Kent Avenue	Collector	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Tenth Avenue to Kent Avenue	Collector	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Kent Avenue to United Methodist Church	Collector	Eastbound	6' sidewalks on property line	-4 foot sidewalk on property line	-lnstall 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Kent Avenue to United Methodist Church	Collector	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T2
Shaff Road/Fern Ridge Road	United Methodist Church to Boulders Mobile Home Park	Collector	Eastbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	United Methodist Church to Boulders Mobile Home Park	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Boulders Mobile Home Park to Highway 22	Collector	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	
Shaff Road/Fern Ridge Road	Boulders Mobile Home Park to Highway 22	Collector	Westbound	6' sidewalks on property line	None	-Install 6 foot sidewalk on property line	
W Washington Street	Myrtle Avenue to Miller Drive	Arterial	Eastbound	6' to 8' sidewalks on property line (varies)	-None	-Install 6 to 8 foot sidewalk on property line	
W Washington Street	Myrtle Avenue to Miller Drive	Arterial	Westbound	6^{\prime} to 8' sidewalks on property line (varies)	-None	-Install 6 to 8 foot sidewalk on property line	T2
W Washington Street	Miller Drive to Evergreen Avenue	Arterial	Eastbound	6^{\prime} to 8' sidewalks on property line (varies)	-None	-Install 6 to 8 foot sidewalk on property line	
W Washington Street	Miller Drive to Evergreen Avenue	Arterial	Westbound	6^{\prime} to 8' sidewalks on property line (varies)	-4 to 5 foot sidewalk on curb line	-Install 6 to 8 foot sidewalk on property line	
W Washington Street	Evergreen Avenue to First Avenue	Arterial	Eastbound	6^{\prime} to 8' sidewalks on property line (varies)	-4 foot sidewalk on curb line	-Install 6 to 8 foot sidewalk on property line	
W Washington Street	Evergreen Avenue to First Avenue	Arterial	Westbound	6^{\prime} to 8' sidewalks on property line (varies)	-4 to 5 foot sidewalk on curb line	-Install 6 to 8 foot sidewalk on property line	T3
E Washington Street	Second Avenue to Third Avenue	Arterial	Eastbound	8' sidewalk on curb line	-None	-Install 8 foot sidewalk on curb line	T2
E Washington Street	Second Avenue to Third Avenue	Arterial	Westbound	6' sidewalk on curb line	-5 foot sidewalk on curb line	-No Project	
Tenth Avenue	Fir Street to Kathy Street	Collector	Southbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	
Tenth Avenue	Fir Street to Kathy Street	Collector	Northbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	
Tenth Avenue	Kathy Street to Fern Ridge Road	Collector	Southbound	$6^{\text {6 }}$ sidewalks on property line	-5 foot sidewalk on curb line	-No Project	
Tenth Avenue	Kathy Street to Fern Ridge Road	Collector	Northbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
ESantiam Street	Highland Drive to Scenic View Drive	Collector	Eastbound	6' sidewalks on property line	-5 foot sidewalk on property line	-No Project	
E Santiam Street	Highland Drive to Scenic View Drive	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
E Santiam Street	Scenic View Drive to 28th Avenue	Collector	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T3
E Santiam Street	Scenic View Drive to 28th Avenue	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	T3
E Santiam Street	28 th Avenue to Highway 22	Collector	Eastbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
ESantiam Street	28th Avenue to Highway 22	Collector	Westbound	6' sidewalks on property line	-None	-Install 6 foot sidewalk on property line	T4
W Locust Street	Gardner Avenue to Stayton High School	Collector	Eastbound	$6^{\text {6 }}$ ' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
W Locust Street	Gardner Avenue to Stayton High School	Collector	Westbound	6' sidewalks on property line	-8 foot sidewalk on curb line	-No Project	
W Locust Street	Stayton High School to Birch Avenue	Collector	Eastbound	6' sidewalks on property line	-4 to 5 foot sidewalk on property line	-No Project	
W Locust Street	Stayton High School to Birch Avenue	Collector	Westbound	6' sidewalks on property line	-3 to 4 foot sidewalk on property line	-Install 6 foot sidewalk on property line	T3
W Locust Street	Birch Avenue to First Avenue	Collector	Eastbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
W Locust Street	Birch Avenue to First Avenue	Collector	Westbound	6' sidewalks on property line	-6 foot sidewalk on property line	-No Project	
W Ida Street	Holly Avenue to Fern Avenue	Collector	Eastbound	6' sidewalks on property line	-6 foot paved path on curb line	-No Project	

W Ida Street	Holly Avenue to Fern Avenue	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
W Ida Street	Fern Avenue to First Avenue	Collector	Eastbound	$6^{\text {' }}$ sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
W Ida Street	Fern Avenue to First Avenue	Collector	Westbound	6' sidewalks on property line	-4 foot sidewalk on curb line	-Install 6 foot sidewalk on property line	T3
Third Avenue	Regis Street to Cedar Street	Neighbordhood Collector	Southbound	5 ' sidewalks on property line	-4 foot sidewalk on curb line	-No Project	
Third Avenue	Regis Street to Cedar Street	Neighbordhood Collector	Northbound	5 ' sidewalks on property line	-4 foot sidewalk on curb line	-No Project	
Third Avenue	Cedar Street to Elwood Street	Neighbordhood Collector	Southbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Third Avenue	Cedar Street to Elwood Street	Neighbordhood Collector	Northbound	5 ' sidewalks on property line	-4 foot sidewalk on property line	-No Project	
Third Avenue	Elwood Street to E Washington Street	Neighbordhood Collector	Southbound	5 ' sidewalks on property line	-6 foot sidewalk on property line	-No Project	-
Third Avenue	Elwood Street to E Washington Street	Neighbordhood Collector	Northbound	5' sidewalks on property line	-4 foot sidewalk on property line	-No Project	

Roadway	Segment	Functional_Classification	Direction	Bicycle_Standard	Existing_Bicycle_System	Bicycle_Improvements_Needed	Tier
Cascade Highway	Highway 22 to Shaff Road	Principal	Southbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Cascade Highway	Highway 22 to Shaff Road	Principal	Northbound	6' Bike Lanes	-6 foot bike lane	-No Project	
First Avenue	Shaff Road to Washington Street	Principal	Southbound	-None	-None	-No Project	
First Avenue	Shaff Road to Washington Street	Principal	Northbound	-None	-None	-No Project	
First Avenue	Washington Street to Water Street	Arterial	Southbound	-None	-None	-No Project	-
First Avenue	Washington Street to Water Street	Arterial	Northbound	-None	-None	-No Project	
First Avenue	Water Street to Santiam River Bridge	Arterial	Southbound	-None	-7 foot paved shoulder	-No Project	
First Avenue	Water Street to Santiam River Bridge	Arterial	Northbound	-None	-7 foot paved shoulder	-No Project	
Golf Club Road	Highway 22 to Mill Creek Bridge	Arterial	Southbound	6' Bike Lanes	-6 foot paved shoulder	-No Project	-
Golf Club Road	Highway 22 to Mill Creek Bridge	Arterial	Northbound	6' Bike Lanes	-6 foot paved shoulder	-No Project	-
Wilco Road	Shaff Road to Deschutes Drive	Collector	Southbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
Wilco Road	Shaff Road to Deschutes Drive	Collector	Northbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
Wilco Road	Deschutes Drive to Washington Street	Arterial	Southbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
Wilco Road	Deschutes Drive to Washington Street	Arterial	Northbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
Shaff Road/Fern Ridge Road	Stayton City Limit to Wilco Road	Collector	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T4
Shaff Road/Fern Ridge Road	Stayton City Limit to Wilco Road	Collector	Westbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T4
Shaff Road/Fern Ridge Road	Wilco Road to Bi-Mart East Driveway	Arterial	Eastbound	6' Bike Lanes	-5 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	Wilco Road to Bi-Mart East Driveway	Arterial	Westbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	First Avenue to Tenth Avenue	Collector	Eastbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	First Avenue to Tenth Avenue	Collector	Westbound	6' Bike Lanes	-5 foot bike lane	-No Project	
Stayton Road	Stayton City Limit to Wilco Road	Arterial	Eastbound	6' Bike Lanes	-6 foot gravel shoulder	-Install 6 foot bike lane	T3
Stayton Road	Stayton City Limit to Wilco Road	Arterial	Westbound	6' Bike Lanes	-6 foot gravel shoulder	-Install 6 foot bike lane	T3
W Washington Street	Wilco Road to First Ave	Arterial	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
W Washington Street	Wilco Road to First Ave	Arterial	Westbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
E Washington Street	First Avenue to Third Avenue	Arterial	Eastbound	6' Bike Lanes	-10 foot paved shoulder	-Restripe to 6 foot bike lane	T1
E Washington Street	First Avenue to Third Avenue	Arterial	Westbound	6' Bike Lanes	-10 foot paved shoulder	-Restripe to 6 foot bike lane	T1
E Washington Street	Third Avenue to Sixth Avenue	Arterial	Eastbound	6' Bike Lanes	-8 foot paved shoulder	-Restripe to 6 foot bike lane	T1
E Washington Street	Third Avenue to Sixth Avenue	Arterial	Westbound	6' Bike Lanes	-8 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Sixth Avenue	Washington Street to Jefferson Street	Arterial	Southbound	6' Bike Lanes	-7 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Sixth Avenue	Washington Street to Jefferson Street	Arterial	Northbound	6' Bike Lanes	-7 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Jefferson Street	Sixth Avenue to Tenth Avenue	Arterial	Eastbound	6' Bike Lanes	-8 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Jefferson Street	Sixth Avenue to Tenth Avenue	Arterial	Westbound	6' Bike Lanes	-8 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Tenth Avenue	Jefferson Street to Santiam Street	Arterial	Southbound	6' Bike Lanes	-11 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Tenth Avenue	Jefferson Street to Santiam Street	Arterial	Northbound	6' Bike Lanes	-11 foot paved shoulder	-Restripe to 6 foot bike lane	T1
Tenth Avenue	Santiam Street to Fern Ridge Road	Collector	Southbound	6' Bike Lanes	-5 to 6 foot bike lane	- No Project	
Tenth Avenue	Santiam Street to Fern Ridge Road	Collector	Northbound	6' Bike Lanes	-5 to 6 foot bike lane	- No Project	
E Santiam Street	Tenth Avenue to Scenic View Drive	Collector	Eastbound	6' Bike Lanes	-5 to 6 foot bike lane	- No Project	
E Santiam Street	Tenth Avenue to Scenic View Drive	Collector	Westbound	6' Bike Lanes	-5 to 6 foot bike lane	- No Project	
W Locust Street	Wilco Road to First Avenue	Collector	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
W Locust Street	Wilco Road to First Avenue	Collector	Westbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T2
Gardner Avenue	Shaff Road to W Washington Street	Collector	Southbound	6' Bike Lanes	-6 foot bike lanes	-No Project	
Gardner Avenue	Shaff Road to W Washington Street	Collector	Northbound	6' Bike Lanes	-6 foot bike lanes	-No Project	
Kindle Way	Goshen Avenue to Shaff Road	Collector	Southbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T4
Kindle Way	Goshen Avenue to Shaff Road	Collector	Northbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T4
W Ida Street	Wilco Road to First Avenue	Collector	Eastbound	Shared Roadway	-None	-Install signage and stencils denoting shared roadway	T1
W Ida Street	Wilco Road to First Avenue	Collector	Westbound	Shared Roadway	-None	-Install signage and stencils denoting shared roadway	T1
Westown Drive	Shaff Road to W Locust Street	Neighbordhood Collector	Southbound	-None	-None	-No Project	

Bicycle Improvements Table, cont.

Westown Drive	Shaff Road to W Locust Street	Neighbordhood Collector	Northbound	-None	-None	-No Project	
Western Avenue	Westown Drive to Gardner Avenue	Neighbordhood Collector	Eastbound	-None	-None	-No Project	
Western Avenue	Westown Drive to Gardner Avenue	Neighbordhood Collector	Westbound	-None	-None	-No Project	
W Regis Street	Gardner Avenue to First Avenue	Neighbordhood Collector	Eastbound	-None	-None	-No Project	
W Regis Street	Gardner Avenue to First Avenue	Neighbordhood Collector	Westbound	-None	-None	-No Project	
Third Avenue	Shaff Road to E Washington Street	Neighbordhood Collector	Southbound	-None	-None	-Add signing and striping to denote bicycle route	T1
Third Avenue	Shaff Road to E Washington Street	Neighbordhood Collector	Northbound	-None	-None	-Add signing and striping to denote bicycle route	T1
Hollister Street	First Avenue to Seventh Avenue	Neighbordhood Collector	Eastbound	-None	-None	-No Project	
Hollister Street	First Avenue to Seventh Avenue	Neighbordhood Collector	Westbound	-None	-None	-No Project	
Sixth Avenue	Santiam Street to Jefferson Street	Neighbordhood Collector	Southbound	-None	-None	-No Project	
Sixth Avenue	Santiam Street to Jefferson Street	Neighbordhood Collector	Northbound	-None	-None	-No Project	
Virginia Street	Third Avenue to Fourth Avenue	Neighbordhood Collector	Eastbound	-None	-None	-No Project	-
Virginia Street	Third Avenue to Fourth Avenue	Neighbordhood Collector	Westbound	-None	-None	-No Project	
First Avenue	Santiam River Bridge to City Limits	Arterial	Southbound	6' Bike Lanes	-2 foot paved shoulder	-Install 6 foot bike lane	T4
First Avenue	Santiam River Bridge to City Limits	Arterial	Northbound	6' Bike Lanes	-2 foot paved shoulder	-Install 6 foot bike lane	T4
Golf Club Road	Mill Creek Bridge to Shaff Road	Arterial	Southbound	6' Bike Lanes	-3 to 4 foot paved shoulder	-Install 6 foot bike lane	T4
Golf Club Road	Mill Creek Bridge to Shaff Road	Arterial	Northbound	6' Bike Lanes	-3 to 4 foot paved shoulder	-Install 6 foot bike lane	T4
Shaff Road/Fern Ridge Road	Bi-Mart East Driveway to Gardner Avenue	Arterial	Eastbound	6' Bike Lanes	-8 foot paved path on property line	-No Project	
Shaff Road/Fern Ridge Road	Bi-Mart East Driveway to Gardner Avenue	Arterial	Westbound	6' Bike Lanes	-6 foot bike lane	-No Project	-
Shaff Road/Fern Ridge Road	Gardner Avenue to Fern Avenue	Arterial	Eastbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	Gardner Avenue to Fern Avenue	Arterial	Westbound	6' Bike Lanes	-5 foot bike lane at sidewalk level	-No Project	-
Shaff Road/Fern Ridge Road	Fern Avenue to First Avenue	Arterial	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T1
Shaff Road/Fern Ridge Road	Fern Avenue to First Avenue	Arterial	Westbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T1
Shaff Road/Fern Ridge Road	Tenth Avenue to United Methodist Church	Collector	Eastbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	Tenth Avenue to United Methodist Church	Collector	Westbound	6' Bike Lanes	-2 foot paved shoulder	-Install 6 foot bike lane	T3
Shaff Road/Fern Ridge Road	United Methodist Church to Boulders Mobile Home Park	Collector	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T3
Shaff Road/Fern Ridge Road	United Methodist Church to Boulders Mobile Home Park	Collector	Westbound	6' Bike Lanes	-6 foot bike lane	-No Project	
Shaff Road/Fern Ridge Road	Boulders Mobile Home Park to Highway 22	Collector	Eastbound	6' Bike Lanes	-None	-Install 6 foot bike lane	T4
Shaff Road/Fern Ridge Road	Boulders Mobile Home Park to Highway 22	Collector	Westbound	6' Bike Lanes	-1 foot paved shoulder	-Install 6 foot bike lane	T4
E Santiam Street	Scenic View Drive to 28th Avenue	Collector	Eastbound	6' Bike Lanes	-6 foot bike lane	-No Project	
E Santiam Street	Scenic View Drive to 28th Avenue	Collector	Westbound	6' Bike Lanes	-6 foot bike lane	-No Project	
E Santiam Street	28th Avenue to Highway 22	Collector	Eastbound	6' Bike Lanes	-1 foot paved shoulder	-Install 6 foot bike lane	T4
E Santiam Street	28th Avenue to Highway 22	Collector	Westbound	6' Bike Lanes	-1 foot paved shoulder	-Install 6 foot bike lane	T4
Third Avenue	Fern Ridge Road to Whitney Street	Neighbordhood Collector	Southbound	-None	-None	-Add signing and striping to denote bicycle route	T1
Third Avenue	Fern Ridge Road to Whitney Street	Neighbordhood Collector	Northbound	-None	-None	-Add signing and striping to denote bicycle route	T1
Third Avenue	E Washington Street to E Water Street	Neighbordhood Collector	Southbound	-None	-None	-Add signing and striping to denote bicycle route	T1
Third Avenue	E Washington Street to E Water Street	Neighbordhood Collector	Northbound	-None	-None	-Add signing and striping to denote bicycle route	T1

Appendix C Evaluation Criteria

APPENDIX C - ALTERNATIVES EVALUATION

Table 10: Evaluation Criteria

Objective	Evaluation Criteria	Evaluation Score		\square															\square		年
	Is inconsistent with state，regional，and／or local planning	－1								－1		－1			－1						
	Goal 6：Strategic Transportation Financing																				
	Will preserve and protect the function of locally and／or regionally significant corridors	＋1		＋1	＋1	＋1		＋1	＋1		＋1		＋1	＋1		＋1	＋1				＋1
Objective A	Will not impact locally and／or regionally significant corridors	0	0				0					0			0			0			
	Will degrade the function of locally and／or regionally significant corridors	－1								－1									－1	－1	
	Will improve travel reliability and efficiency of major travel routes	＋1		$+1$	＋1	＋1		$+1$	＋1				＋1	$+1$		＋1	＋1				＋1
Objective D	Will not impact travel reliability and efficiency of major travel routes	0								0	0	0			0			0	0		
	Will degrade travel reliability and efficiency of major travel routes	－1	－1				－1													－1	
	Goal 7：Health																				
	Could encourage the use of active modes of transportation	＋1		＋1	＋1	＋1		＋1	＋1				＋1	＋1		＋1	＋1				
Objective A，B，an C	Would not encourage the use of active modes of transportation	0								0	0							0	0	0	0
	Could discourage the use of active modes of transportation	－1	-1				－1					-1			-1						
	Will contribute to the development of a multi－modal system	＋1											＋1	$+1$		$+1$	＋1				
Objective D	Will not contribute to the development of a multi－modal system	0								0	0							0	0	0	0
	Will impede development of a multi－modal transportation system	－1										－1			－1						
	Goal 8：Land Use and Iransportation Integration																				
	Will encourage more compact，walkable，mixed－use and／or transit－oriented development	＋1											＋1	＋1		＋1	＋1				
Objective A	Will not encourage more compact，walkable，mixed－use and／or transit－oriented development	0	0	0	0	0	0	0	0	0	0	0			0			0	0	0	0
	Will discourage more compact，walkable，mixed－use and／or transit－oriented development	－1																			
	Goal 9：Community and Economic Vitality																				
	Could improve the movement of goods and delivery of services	＋1		＋1	＋1	＋1		＋1	＋1				＋1	＋1		＋1	＋1				＋1
Objective B	Would not improve the movement of goods and delivery of services	0								0	0	0			0			0			
	Could impede the movement of goods and delivery of services	－1	-1				－1												-1	－1	
	Could encourage tourism and／or recreational tourism	＋1																			
Objective E and F	Would not encourage tourism and／or recreational tourism	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Could discourage tourism and／or recreational tourism	－1																			
	TOTAL		－3	＋8	＋6	＋7	－3	＋7	＋8	＋1	＋4	－3	＋6	＋6	－3	＋7	＋6	0	＋1	－3	＋6

Appendix D Signal Warrant Analyses

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	22352
Project Name:	Stayton TSP Update
Analyst:	RBG
Date:	12/5/2018
File:	H:\<2\<23b2 - stayton Iransportatıon system Plan\signal warrants \[SchaffWilco Signal Warrant Analysis.xls]Data
Intersection:	Invut Cascade Highway / OR 22 WB Ramps
Scenario:	Existing

Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	Yes
\#2	Four-Hour Vehicular volume	Yes	Yes
\#3	Peak Hour	Yes	Yes
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	Yes
Population < 10,000?	Yes
Warrant Factor	70%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	90%
Major Street: 8 8th-Highest Hour / Peak Hour	70%
Minor Street: 4 4th-Highest Hour / Peak Hour	90%
Minor Street: 8 8th-Highest Hour / Peak Hour	70%

Analysis Traffic Volumes

Hour	Major Street		Minor Street	
Begin End	NB	SB	EB	WB
5:00 PM 6:00 PM	572	357	100	43
2nd Highest Hour	535	334	94	40
3rd Highest Hour	527	329	92	40
4th Highest Hour	513	320	90	39
5th Highest Hour	468	292	82	35
6th Highest Hour	461	287	81	35
7th Highest Hour	431	269	75	32
8th Highest Hour	401	250	70	30
9th Highest Hour	401	250	70	30
10th Highest Hour	394	246	69	30
11th Highest Hour	371	232	65	28
12th Highest Hour	349	218	61	26
13th Highest Hour	342	213	60	26
14th Highest Hour	327	204	57	25
15th Highest Hour	260	162	45	20
16th Highest Hour	245	153	43	18
17th Highest Hour	223	139	39	17
18th Highest Hour	193	121	34	15
19th Highest Hour	156	97	27	12
20th Highest Hour	74	46	13	6
21st Highest Hour	67	42	12	5
22nd Highest Hour	45	28	8	3
23rd Highest Hour	37	23	6	3
24th Highest Hour	37	23	6	3

Warrant \#1 - Eight Hour

Warrant Factor	Condition	Major Street Requirement	Minor Street Requirement	Hours That Condition Is Met	Condition for Warrant Factor Met?	Signal Warrant Met?
100%	A	500	150	0	No	No
	B	750	75	5	No	
80%	A	400	120	0	No	Yes
	B	600	60	11	Yes	
70%	A	350	105	0	No	Yes
	B	525	53	14	Yes	
56%	A	280	84	4	No	Yes
	B	420	42	15	Yes	Yes

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	22352
Project Name:	Stayton TSP Update
Analyst:	RBG
Date:	$12 / 5 / 2018$
File:	H:\<2\2LSbL-Stayton Iransportation System PIan\sıgnal
	warrants \backslash [SchaffWilco Signal Warrant Analysis.xls]Data
Intersection:	Invut
Wilco/Schaff	
Scenario:	Existing PM Peak

	Warrant Summary		
Name	Analyzed?	Met?	
\#1	Eight-Hour Vehicular Volume	Yes	Yes
\#2	Four-Hour Vehicular volume	Yes	Yes
$\# 3$	Peak Hour	Yes	Yes
$\# 4$	Pedestrian Volume	No	-
$\# 5$	School Crossing	No	-
$\# 6$	Coordinated Signal System	No	-
$\# 7$	Crash Experience	No	-
\#8	Roadway Network	No	-
$\# 9$	Intersection Near a Grade Crossing	No	-

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach $=$	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	Yes
Warrant Factor	70%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

Analysis Traffic Volumes

Hour	Major Street		Minor Street	
Begin End	NB	SB	EB	WB
5:00 PM 6:00 PM	403	575	367	236
2nd Highest Hour	382	544	347	223
3rd Highest Hour	376	537	343	220
4th Highest Hour	360	514	328	211
5th Highest Hour	355	506	323	208
6th Highest Hour	355	506	323	208
7th Highest Hour	339	483	308	198
8th Highest Hour	333	475	303	195
9th Highest Hour	322	460	294	189
10th Highest Hour	301	429	274	176
11th Highest Hour	290	414	264	170
12th Highest Hour	285	406	259	167
13th Highest Hour	274	391	250	160
14th Highest Hour	236	337	215	138
15th Highest Hour	188	268	171	110
16th Highest Hour	177	253	161	104
17th Highest Hour	124	176	113	72
18th Highest Hour	102	146	93	60
19th Highest Hour	54	77	49	31
20th Highest Hour	38	54	34	22
21st Highest Hour	32	46	29	19
22nd Highest Hour	21	31	20	13
23rd Highest Hour	11	15	10	6
24th Highest Hour	11	15	10	6

APPENDIX E: 2015 FINAL DESIGN STANDARDS PROPOSED CHANGES

GEOMETRIC DESIGN REQUIREMENTS BY STREET FUNCTIONAL CLASSIFICATION*

 The Stayton ISP calls for a $100 \mathrm{R} / \mathrm{W}$ \& 5 -lane section. The City of Stayton and Marion County have not yet completed a conceptual design plan for Golf Club Road (Hwy 22 to Shaff/Wilco Road intersection). Until a conceptual design plan is
approved by the City and Marion County for Golf Club Road, the City will review each development fronting Golf Club Road on a case-by-case basis to determine R/W dedications, pavement widths, \# of lanes, and frontage improvement (curb, sidewalk, approved by the City and Marion County for Golf Club Road, the City will review each development fronting Golf Club Road on a case-by-case basis to determine R/d dedications, pavement widths, $\#$ or fanes, and frontage improvement (curb, sidewal See Footnote 9 below.
${ }^{2}$ Shaff Road: Existing R/W varies. R/W dedications to 80^{\prime} are required -- 40^{\prime} from centerline unless otherwise required. See also Footnote 9 below for Golf Club/Shaff/Wilco Road intersection.
${ }^{3}$ W. Washington Street:
a. ($1^{\text {st }}$ Avenue to Wilco Road): This section is improved curb-to-curb. R/W and pavement widths vary. Use existing curbs to plan for SW \& bike lanes.
b. ($1^{\text {st }}$ Avenue to Evergreen): Existing R/W varies from 45' to 55^{\prime}. R/W dedications to 60^{\prime} are required -- 30^{\prime} from centerline. 8^{\prime} sidewalk on north side from $1^{\text {st }}$ to Gardner Avenue.
c. (Evergreen to Wilco Road): Existing R/W is 60^{\prime} Width. No R/W dedication is anticipated, unless needed to allow for sidewalk widening and bike lane improvements.
d. (Intersections @ $1^{\text {st }}$, Gardner \& Wilco): R/W dedications will be required near $1^{\text {st }}$ Avenue and Wilco Road intersections.
${ }^{4}$ E. Washington Street:
a. ($1^{\text {st }}$ Avenue to $3^{\text {rd }}$ Avenue): This two block section from $1^{\text {st }}$ Avenue to $3^{\text {rd }}$ Avenue is part of the Downtown core area.
c. (E. Washington Street: $1^{1 t}$ to $3^{\text {rd }}$ Avenue): Existing R/W is 60^{\prime}. Pavement width narrows from $50^{\prime} @ 1^{\text {st }}$ Avenue to 44^{\prime} at $3^{3 d}$ Ave. R/W dedication is anticipated at corners.
${ }^{5}$ E. Washington Street:
a. ($3^{\text {rd }}$ Avenue to $10^{\text {th }}$ Avenue): This corridor from $1{ }^{\text {st }}$ Avenue to $10^{\text {th }}$ Avenue is improved from curb-to-curb. Pavement width is typically 40^{\prime}, with a few exceptions
b. (E. Washington: $3^{\text {rd }}$ to 6^{th} Avenue): Existing R/W is 60^{\prime}. Pavement width varies from $44^{\prime} @ 3^{\text {rd }}$ to $40^{\prime} @ 6^{6^{\mathrm{h}}}$. R/W dedication is anticipated at corners
c. ($6^{\text {it }}:$ Avenue / Washington to Jefferson Street): Existing R/W is 60^{\prime}. Pavement width is 40^{\prime}. R/W dedication is anticipated at corners
d. (Jefferson Street: $6^{\text {th }}$ to $10^{\text {th }}$ Avenue): Existing R/W is 60^{\prime}. Pavement width is 40^{\prime}. R/W dedication is anticipated at corners.
e. ($10^{\text {th }}$ Avenue / Jefferson to E. Santiam Street): Existing R/W is 60^{\prime}. Pavement width is $50^{\prime}+/$.. NO R/W dedication is anticipated.
${ }^{6} 1^{\text {st }}$ Avenue:
a. (Regis Street to Washington Street): The Stayton TSP calls for an 80^{\prime} R/W \& 3-lane section from Regis Street to the North Santiam River. R/W widths vary. Existing pavement width is $40+/$ - with 2 travel lanes and a center turn lane, but no bike lanes. Measure R/W from center section line of Section 10 . In lieu of full R/W, City can accept $60^{\prime} \mathrm{R} / \mathrm{W}+$ a 10^{\prime} wide PUE/SW easement where approved.
b. (Regis Street to Cedar): Existing R/W is 50^{\prime}. Minimum R/W dedication to 60^{\prime} is required - 30^{\prime} ' from centerline + a $10{ }^{\prime}$ wide PUE/SW easement.
c. (Cedar Street to Hollister Street): Existing R/W varies from 55^{\prime} to 60^{\prime}. Minimum R/W dedication to 60^{\prime} is required -30^{\prime} from centerline + a 10^{\prime} wide PUE/SW easement.
d. (Hollister Street to Washington Street): Existing R/W varies from 45' to 60^{\prime}. Minimum R/W dedication to 60^{\prime} is required -30^{\prime} from centerline + a 10^{\prime} wide PUE/SW easement.

Right-of-way	Improvement Width (ft) (curb - curb)	 Size Lanes (No. / Width)	BicycleLanes(No./ Width)	$\begin{gathered} \text { On-street } \\ \text { Parking } \\ \text { (No. / Width) } \end{gathered}$	Sidewalk Alignment	Sidewalk	Landscape	Street where the Standard is to Apply		At Major Intersections		Roadway Jurisdiction
Width (ft)						Width (ft)	Area Width (ft)	Specific Street	Where Standard will Apply	Lanes **	Intersection Locations	
Minor Arterial (continued) $\quad 2 / 11^{\prime}+12^{\prime}$												
60^{\prime} or 80^{\prime}	50' 46'	$\underline{2112}+14^{\prime}$	2/6'	No	Curb line	8'	6	15t Avenue ${ }^{7}$	Washington St. to Water St.	4 lanes	Ida	Marion Co.
80'	$\begin{aligned} & 50^{\prime}+1036^{\prime} \\ & 46^{\prime} \text { to } 34 \end{aligned}$	$\begin{array}{r} 2 / 121^{\prime}+14^{\prime} \\ 2 / 11^{\prime}+1{ }^{\prime} \end{array}$	2/6'	No	Property line	8'	$6{ }^{\prime}$	$1{ }^{\text {st }}$ Avenue ${ }^{8}$	S. of Water St. (taper out turn lane by bridge)	3 lanes	Water	Marion Co.
Major Collector												
80'	$50^{\prime \prime} 46$	$\begin{aligned} & \hline 2 / 12^{\prime \prime}+14^{\prime} \\ & 2 / 11^{\prime}+12^{\prime} \end{aligned}$	2/6'	No	Property line	$6{ }^{\prime}$	8'	Designated yellow in TSP	(Designated yellow in TSP or by PW Director)	Variable	Varies	City
80'	50^{\prime}	2/12' + 14'	2/6'	No	Property line	$6{ }^{\prime}$	$8{ }^{\prime}$	Wilco Road ${ }^{9}$	Shaff Road (Signalized) to Ida Street (All Way Stop)	5 lanes	Shaff	Marion Co.
80'	$50^{\prime} 46^{\prime}$		2/6'	No	Property line	$6{ }^{\prime}$	$8{ }^{\prime}$	Washington - W. Stayton Road I Shaff Road ${ }^{10}$	West of Wilco Road Taper to 2 lanes @ UGB	3 lanes	Wilco	Marion Co.
80^{\prime}	46'50'		2/6'	No	Property line	$6{ }^{\prime}$	8	Fern Ridge Road ${ }^{11}$	1st Avenue to Hwy 223 lanes	5 lanes	$1^{\text {st }}$ Avenue	Marion Co.
60^{\prime}	34' 6^{\prime}	2/12'11'	2/6'	No	Property line	$6{ }^{\prime}$	5	Locust Street ${ }^{12}$	Wilco Road to $1^{\text {st }}$ Avenue	3 lanes	$1^{\text {st }}$ Avenue	City
60^{\prime}	36' 34'	2/42'11'	2/6'	No	Property line	6	5	Gardner Avenue ${ }^{13}$	Shaff Road to Washington Street	3 lanes	Shaff \& Washington	City
60^{\prime}	36	2/11'	Shared	$2 / 7$	Property line	6^{\prime}	5	Ida Street ${ }^{14}$	Wilco Road to $1{ }^{\text {st }}$ Avenue	3 lanes	$1^{\text {st }}$ Avenue	City
60^{\prime}	$36^{\prime} 34^{\prime}$	2/12'11'	2/6'	No	Property line	$6{ }^{\prime}$	5	$10^{\text {th }}$ Avenue ${ }^{15}$	Fern Ridge Road to E. Santiam Street (3 lanes @ Hospital)	3 lanes	Ends \& Hospital	City
Corhood Collector												
60^{\prime}	$34^{\prime} \& 36^{\prime}$	2/10' \& 2/11'	No	$2 / 7{ }^{\prime}$	Property line	5'	4.5 \& \& 5.5 '	Designated green in TSP	Designated by green line on TSP map	2 lanes	Varies	City

[^7]${ }^{15} 10^{\text {th }}$ Avenue: Existing R/W varies 60^{\prime} to 70^{\prime}. R/W dedication, sidewalk and or slope easement is required for east side sidewalks north of E. Fir Street
2015 EDITION

[^8][^9]
[^0]: ${ }^{1}$ ORS 366.215.

[^1]: ${ }^{2}$ A key implementation action is to "Establish the highest priorities for spending Transportation Impact Fees and System Development Charge revenues within the Downtown." (Downtown Stayton Transportation \& Revitalization Plan, pg. 2)

[^2]: Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

[^3]: Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

[^4]: ${ }^{1}$ https://onthemap.ces.census.gov/

[^5]: *Streets and Alley requirements shown above are for general guidance. Specific requirement for each development shall be confirmed and coordinated with the City Engineer.

[^6]: change to a development near each of these intersections, the City and Marion County will review and agree on the intersection design.

[^7]: $1^{\text {st }}$ Avenue:
 a. (Washington Street to Ida Street): The Stayton TSP calls for an 80^{\prime} R/W \& 3-lane section from Regis Street to the North Santiam River. R/W widths vary. Existing pavement width is $40+/-$ with two travel lanes and a center turn lane, but no bike lanes. Measure R/W from center section line of Section 10 . In lieu of full R/W, City can accept 60^{\prime} R/W + a 10^{\prime} wide PUE/SW easement where approved.
 b. (Washington Street to Ida Street): Existing R/W varies from 40^{\prime} to 55^{\prime} '. Minimum R/W dedication to 60^{\prime} is required -30^{\prime} from centerline. See Barker research on $1^{\text {st }}$ Avenue R/W lines for this section of roadway and City GIS concept plan.
 c. (Ida Street to Water Street): Existing R/W varies from 56, to 59, Minimum R/W dedication to 60^{\prime} is required - 30 ' from center section line of Section 10 .
 section at Water Street. Minimum R/W dedication to 80^{\prime} is required south of Water Street - 40^{\prime} from centerline.
 and locations, and various water quality swale locations. New developments and substantial changes to existing development are to comply with the conceptual design plan unless otherwise approved by the City and Marion County
 ${ }^{10}$ W. Washington Street \& W. Stayton Road / Shaff Road: See Footnote 9 above
 ${ }^{11}$ Fern Ridge Road: Existing R/W varies from 60^{\prime} to 80^{\prime}. Minimum R/W dedication to 80^{\prime} is required -40^{\prime} from centerline. Match north R/W \& curb lines near $10^{\text {th }}$ Avenue at end of Sylvan Springs subdivision.
 ${ }^{12}$ Locust Street: Existing R/W varies from 50^{\prime} to 60 '. Minimum R/W dedication to 60^{\prime} is required - 30^{\prime} from centerline. Match north R/W line. Only R/W dedication required between $1^{\text {st }}$ Avenue \& Birch on south side.
 ${ }^{13}$ Gardner Avenue: Existing R/W is 60 . Only R/W dedication required is radius at Shaff Road / Gardner Avenue intersection
 ${ }^{14}$ Ida Street: Existing R/W is 60^{\prime}, except at NW corner of Evergreen. Minimum R/W dedication to 60^{\prime} is required - 30^{\prime} from centerline. R/W dedication required at corner of Evergreen.

[^8]: *Streets and Alley requirements shown above are for general guidance. Specific requirement for each development shall be confirmed and coordinated with the City Engineer.

[^9]: change to a development near each of these intersections, the City and Marion County will review and agree on the intersection design.

